AFRL-VA-WP-TR-1999-3052

DEVELOPMENT OF THE A
AERODYNAMIC/AEROSERVOELASTIC {/
MODULES IN ASTROS

VOLUME 4: ZAERO THEORETICAL
MANUAL (F33615-96-C-3217)

P.C. CHEN
D. SARHADDI
D.D.LIU

ZONA Technology, Inc.

7430 E. Stetson Drive, Ste 205
Scottsdale, AZ 85251

FEBRUARY 1999

FINAL REPORT FOR PERIOD SEPTEMBER 1996 - SEPTEMBER 1998

Approved for public release; distribution unlimited

AIR VEHICLES DIRECTORATE l 1 9 9 9 1 1 1 5 0 9 2 |

AIR FORCE RESEARCH LABORATORY y
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

. DTIC QUALITY INSPECTED &



NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE
THE UNITED STATES GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS,
SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER
OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS
OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED
INVENTION THAT MAY BR RELATED TO THEM.

THIS REPORT IS RELEASEABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO
THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED
FOR PUBLICATION.

VICTORIA A. TISCHLER VIPPERLA B. VENKAYYA
Aerospace Engineer Leader, Multidisciplinary Design
Design and Analysis Branch Design & Analysis Branch

Nl D/t

NELSON D. WOLF, Chief
Design and Analysis Branch
Structures Division

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED
FROM OUR MAILING LIST, OR IF THE ADDRESSEE IS NO LONGER
EMPLOYED BY YOUR ORGANIZATION, PLEASE NOTIFY AFRL/VASD
BLDG 45, 2130 8TH STREET, SUITE 1, WRIGHT-PATTERSON AFB OH
45433-7542 TO HELP MAINTAIN A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN
IS REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL
OBLIGATIONS, OR NOTICE ON A SPECIFIED DOCUMENT.



REPORT DOCUMENTATION PAGE M N G 4.0168

[Futtic reporting burden for this collectop of mformavon Is estimated to averago 1 hour per re?onse , including the time for reviewing instructions, hi efing and
maintaining the data needed, pleting and reviewing the Hlection of | nformation. Send comments regarding this burden estimate or an other aspect af tms oollechon of in rmation,
Wu’z’&ﬁ?«ﬁ?‘éﬁ?&%ﬁ’ﬁ‘ﬁa on o Washinglon Headquarters Serices, Dtectoratsfo nformation Operatons and Repors, 1213 Jaffrson Davis Hghway. Suft 1204, Aringtan.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

FEBRUARY 04, 1999 FINAL 24 SEP 1996 - 24 SEP 1998
4. TITLE AND SUBTITLE ) 5. FUNDING NUMBERS
DEVELOPMENT OF THE AERODYNAMIC/AEROSERVOELASTIC
MODULES IN ASTROS C. F09603-95-D-0175
VOLUME 4 - ZAERO THEORETICAL MANUAL PE:  65520F
6. AUTHOR(S) PR:  STTR
P. C. Chen, D.D. Liu and D. Sarhaddi TA: 41
ZONA Technology, Inc. Wu: - 00
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
ZONA Technology, Inc. REPORT NUMBER
7434 E. Stetson Drive, Suite 205
Scottsdale, AZ 85251 ZONA 99-11D
Tel 602-945-9988 / Fax 602-945-6588
9. SPONSORING/MONITORING AGENCY/(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Vehicles Directorate AGENCY REPORT NUMBER
ﬁulr gorce ﬁlestearc}'\éaboratogy
orce Materiel Comman
Oght -Patterson Air Force Base, Oh 45433-7542 AFRL-VA-WP-TR-1999-3052
P Dr V. B. Venkayya, AFRL/VASD, 937-255-2582

[11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. ABSTRACT (Maximum 200 words)

This report is a part of the documentations which describe the complete development of an STTR Phase II effort entitled,
“Development of the Aerodynamic/Aeroservoelastic Modules in ASTROS.” This report is one of four manuals that comprise
the final report. The remaining reports consist of the ZAERO User’s Manual (Volume I), the ZAERO Progra.mmer s Manual
(Volume II) and the ZAERO Applications Manual (Volume III).

ASTROS* is the seamless integration of the ZAERO module into ASTROS. As an aerodynamic enhancement to ASTROS,
ZAERO is the ZONA aerodynamic module, unified for all Mach number ranges.

This theoretical manual presents the theoretical formulations of the ZONAG6, ZTAIC, ZONA7, and ZONA7U methods that
comprise the aeroelastic engineering modules of ZAERO. Other areas covered include the following: fundamentals of
aeroelasticity, the Unified Aerodynamic Influence Coefficient (AIC) matrix generation, the spline methods for spline matrix
generation and solution techniques for flutter analysis.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Multidisciplinary Optimization, ZAERO Module, ASTROS*, Subsonic-Transonic-Supersonic- 158

Hypersonic Aerodynamics, Aeroelasity, Aeroservoelasticity, Flutter —
P y 5 9 Ys Ys 16. PRICE CODE

17. SECURITY CLASSIFICATION }18. SECURITY CLASSIFICATION }19. SECURITY CLASSIFICATION }20.LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF THIS ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-280-550 _ Standard Form (Rev. 2-89)

Prascribed by ANS! d. Z36-18
200-102

ke




TABLE OF CONTENTS

INTRODUCTION ....cocioiirieinierieerirtneeesseieseseeseseesssesssesssssssissssssssiesssssssssssssasassssas
L1 OVEIVIEW oottt cree e saese s e s ssaesast s b sre s s e sasssasanes
1.2  ZAERO/UAIC: A Unified AIC Based Aerodynamic Module ..................
1.3 ZAERO/UAIC and ASE modules in ASTROS ...,

2.0

3.0

4.0

1.4  Other New ZAERO modules in ASTROS: AGM, 3D Spline and Flutter ...
AEROELASTICITY FOUNDATION OF ZAERO ....ccvvviirinmriinniienesssnsannaes

2.1  Fundamental of A€roelastiCity .........cccoceeveereveneeneemsennisrenieisneeestesnsesesenens
2.2 Unified AIC Of ZAEROQ ......cocooverieeiiirieteeiereereiesesesisisnssssansssassesses

2.3 Functionality of the Splirie Matrix

ZONA6 / ZONA7. UNSTEADY SUBSONIC / SUPERSONIC
AERODYNAMICS FOR WING-BODYAIRCRAFT CONFIGURATIONS
WITH EXTERNAL STORES

3.1  Backgrounds of ZONA6 and ZONA7

3.5 Discretization of the Source and Doublet Integrals

39  Body Wake Effect

3.11 Super-Inclined Boxes and Inlet Boxes
3.12 Treatment of Engine Inlets

ZTAIC: UNSTEADY TRANSONIC AERODYNAMICS WITH STEADY
PRESSURE INPUT

4.1  Background of ZTAIC ........coviiiriireiiriecce ettt esnesessnensanas
42  The Chordwise Mean Flow and Spanwise Phase Correction Procedure .....

4.3  The Inverse Airfoil Design (IAF2) Scheme

il

...............................................................

2.4  Impact of Q(ik) on Flutter Solution Technmique ..........ccoeeeiiiniecenennnnerennn.

.................................................................................

.........................................................

3.2  Integral Equations of the Linearized Small Disturbance Equation .............
3.3  Unsteady Boundary Condition and Unsteady Pressure Coefficients ..........
3.4  Paneling Scheme for Aircraft Configuration .............cccocereieniieniiininnenccneae
3.6  Matrix Equations for the Solution of Unsteady Pressure ........ccccoevevinece
3.7  Construction of Aerodynamic Influence Coefficient (4/C) Matrix ............
3.8  J-Set and K-Set Aerodynamic Degrees of Freedom for 4IC Matrix ...........
3.10 Technique of Minimiz.i.r.lg Spuriou.s '\-N.av.es for SﬁberSonic Body Boxes ....

..........................................................................

.................................................................................................

................................................

44  Frequency-Domain Pressure Coefficient by Indicial Method .....................
45  Modal Aerodynamic Influence Coefficient (MAIC) Matrix .........ccccoeuenee.

)
00 ~J W == — &0
o

11

11
14
16
17




TABLE OF CONTENTS (cont.)

5.0 ZONA7U: UNIFIED HYPERSONIC / SUPERSONIC UNSTEADY
AERODYNAMICS FOR WING-BODY AIRCRAFT CONFIGURATION ......... 81
5.1  Background of ZONATU ...ttt esetsssesenns 81
5.2 Review of Piston ThEOTY .....ccococoveiieeeeeeeeeeeee et 88
5.3  Hypersonic Similarity for Thickness Effects ............ooeveeievcececrcrieennen. 92
54  Unified Supersonic/Hypersonic Lifting Surface Method of ZONA7U ....... 93
5.5  AIC Matrix of ZONA7U for Hypersonic Wing-Body Configuration ......... 95
6.0  SPLINE METHODS FOR SPLINE MATRIX GENERATION ...........ccccouvnrnnnne. 96
6.1  The Infinite Plate Spline (IPS) Method .........ccooeviviveceeceieireeeeeceree, 97
6.2  The Thin-Plate Spline (TPS) Method ..., 104
6.3  The Beam Spline Method ..ottt 107
6.4  TheRigid-Body Attachment (RBA) Method ...........ccocoeeevemrcecrccreceen, 115
6.5  Matrix Assembly of the Total Spline MatriX ..........ccccoevveivreeiverincrerenan 117
7.0  FLUTTER SOLUTION METHODS ........ccocoiioiritnrenerneireeresesesesesesessnsenesssenns 118
7.1 The K-Method ...ttt et 119
7.2 TheP-KMethod ...ttt e be b 122
7.3 The @Method ...t 125
REFERENCGES .......oooiirirtcieirtninerteerteteeiestststst st esaasssssssssssssssssesesansssssesesensasssessssenes 141

iv




1.4
1.5
1.6

2.1
2.2

3.1

32

33

3.4

35

3.6
3.7

3.8

LIST OF FIGURES

Computational Aeroelasticity: A Global Strategy
Computational Aeroelasticity for MDO Applications

ZAERO/UAIC: A Unified AIC Based Aerodynamic
Module

ZAERO/UAIC Module
The Aerodynamic Geometry Module (AGM) of ZAERO
The 3D Spline Module of ZAERO

Aeroelastic Functional Diagram

Typical Panel Model of a Wing-Body Configuration

Comparison of Computed Unsteady Pressures for
Plunging M=1.25 and k=2.0

Comparison of Computed Unsteady Pressures for a
Pitching Flat Plate About the Leading Edge at M=1.25
and k=2.0

Aerodynamic Modeling of F-18 Wing

Effects on Panels on Computed Pressures for an F-18
Wing with an Oscillating Leading Edge Flap at 58.8%
Span, M=1.1 and k=4.0

Real and Imaginary Part of the Lift on the Main Wing
due to Pitch of the Canard, M=1.054

Paneling Scheme for a 70° Delta Wing

Computed and Measured Flutter Speeds vs. Mach
Number

Comparison of Ratios of Flutter Frequency vs. Mach
Number

o
N R S ]
[¢]

KN

12
15

21
21
21
22

22

23
23

23




3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

LIST OF FIGURES (cont.)

In-Phase and Out-of-Phase Pressure Coefficients for a
Bolic-Ogive in First Bending Mode at M=2.5 and
Reduced Frequency k=1.0.

Static Loading About the Fuselage-Wing Junctions

Paneling Model for the Underwing Store Configuration:
Northrop F-5 Wing Plus Underwing Pylon, Launcher,
Missile Body with Four Aft Fins

Unsteady Normal Force and Pitching Moment for the
Underwing Store Configuration With and Without the
Missile Body Oscillating about 50% Root Chord at
M, =1.1and 1.35 and Reduced Frequency £=0.1

Unsteady Side Force and Yawing Moment for the
Complete Underwing Store Configuration With and
Without the Missile Body and Launcher Oscillating
about 50% Root Chord at M., = 1.1 and 1.35 and
Reduced Frequency k= 0.1

Unsteady Spanwise Normal Force and Pitching Moment
for the Clean F-5 Wing and the Underwing Store

Configuration at M,, = 1.35 and Reduced Frequency
k=0.1

Static Loading of NACA Wing-Body Configuration;
M=06and a=4°

NLR Wing-Tip-Tank Configuration Showing Paneling
Scheme

Steady Pressure Distribution Along the Tip-Tank of NLR
Wing-Tip-Tank Configuration; M= 0.45 and o = 4°:
a)0=2925%°and b)6=67.5°

Unsteady Pressure Distribution Along the Tip-Tank of
NLR Wing-Tip-Tank Configuration; A/=0.45, a=0°,
k=0.305, X,= 0.15 cg, and 6 =202.5°

Unsteady Normal Load Distribution Along the Tip-Tank

of NLR Wing-Tip-Tank Configuration; M= 0.45, o= 0°,
k=0.305 and X, =0.15 cg,

vi

25

25

26

26

27

27

28

28

28



321

3.22
3.23

3.24

3.25

3.26 .

3.27

3.28
3.29

3.30

3.31

3.32

LIST OF FIGURES (cont.)

Generalized Aerodynamic Forces C;_(=Qi2/S) versus

Reduced Frequency k. AR =20, Rectangular Wing
(M=0.0,x,=0.5¢c); a)Panel Number=10x 10,
b) Panel Number = 10 x 40

Effects of Panel Numbers on GAF C,_and Cy;_:
AR =20; Rectangular Wing (M= 0.0, £ = 10, x,= 0.5¢)

Typical Paneling Scheme

Effects of Sweptback Angle on C;_and C, (M=0.8,
k=0.0,x,=0.5¢)

In-Phase Pressures on Two Spanwise Stations:

70° Delta Wing (M =0.8, k= 0.0, x, - 0.5¢)
Out-of Phase Pressures on Two Spanwise Stations:
70° Delta Wing (M =0.8, k=0.5,x,=0.5¢)
Out-of Phase Pressures on Two Spanwise Stations:
70° Delta Wing (A= 0.8, k= 10.0, x, = 0.5¢

Effects of Panel Numberson C;_and C,, :

70° Flat Delta Wing (M =0.8, £=10.0, x,=0.5¢)
Surface definition of configuration and wake

Aircraft Components Showing Body and Wing
Segment/Box

Flow Chart of Computation and Calculation Procedure
for Unsteady Pressures

Comparison of Surface Pressure Distribution for a Blunt
Body (Lp/d=5) at «=0°, M =0 and Base Pressure
C,..=-0.169

Computer Wake Shape for a Blunt Body at M =0 and

o = 0°;, a Meridian-Plane View

vii

g
&
[¢]

29

30

30
31

32

33

33

34

37
41

47

51

53



3.33

3.34

3.35

3.36

3.37

3.38
3.39

3.40

3.41

4.1
4.2

4.3

4.4

LIST OF FIGURES (cont.)

Unsteady Pressure Distribution Along the Tip-Tank of
NLR Wing-Tip-Tank Configuration; M= 0.45, a. = 0°,
k=0.305, Xx,=0.15 cg, and 8 =202.5°

NLR Wing-Tip-Tank-Pylon-Store Configuration
Showing Paneling Scheme

Steady Pressure Distribution Along the Store of NLR
Wing-Tip-Tank-Pylon-Store Configuration; M= 0.45
and a=0° a)6=90° b)06=180°and c)6=270°

Unsteady Pressure Distribution Along the Tip-Tank of
NLR Wing-Tip-Tank Configuration at a) 6 = 157.5°
and b) 6=292.5°, M=045, a=0° k=0.305 and
X,=0.15 cg,

Cone-Cylinder-Cone at M= 2.0 and o = 0° Using
ZONA7 without Wave Minimization

Opposite Points from the Panel Having the Same Xjower

Propagation of Spurious Wave generated by the Real
Geometry Comer

Cone-Cylinder-Cone at M= 2.0 and o = 0° Using
ZONA7 with Wave Minimization

Superinclined Box a) on Engine Inlet, b) on Thick Body

Flow Chart of ZTAIC Computation Procedure

The Lessing Wing a) Configuration, b) Magnitude of
the First Bending, c) Phase Angle (in °) of the First
Bending, M=0.9, k=0.13

LANN Wing Comparison of In-Phase and Out-of Phase
Pressures at Two Spanwise Locations: Pitching
Oscillation About 62% Root-Chord at A#=0.82, ¥=0.205

Northrop F-5 Wing with Oscillation Flap: Comparison
of In-Phase and Out-of Phase Pressures with Hinge Line
at 82% Chord at Sections 1 and 3, M=0.9, k=0.274

viii

54

55

56

57

57
59

61

66
68

69

70



4.7

5.1

5.2

5.3

5.4

5.5

5.6
5.7

LIST OF FIGURES (cont.)

Comparison of Flutter Speed and Frequency of 445.6
Weakened Wing at M= 0.678, 0.90 and 0.95

Comparison of Flutter Speed and Frequency of 445.6
Solid Wing at A= 0.90 and 0.95

Steady Pressure Inputs and Equivalent Airfoil Outputs at

various Spanwise Locations (o upper surface, A lower
surface, — presents TES data):

a) LANN Wing at Mean Incidence oc, = 0.62°,
M_ = 0.82 (NLR Measured Data),

b) Northrop F-5 Wing at Mean Incidence o, = 0°,
M_ = 0.90 (NLR Measured Data);

¢) Northrop F-5 Wing at Mean Incidence oc, = 0°,
M_ =0.95 (XTRAN3S-Ames Input)

Stability Derivatives for an oscillating Wedge vs.
Reduced Frequency: (M=3.0, #=0.5¢, o =10°)
Damping-in-pitch C, vs. Semiwedge Angle, 2= 0.5c:
M= 2a)5.0, b) 10.0

Stiffness Derivative C ,,, and Damping-in-pitch
Derivatives C,, vs. Semiwedge Angle, h=0.5¢c: M=
a)5.0, b) 10.0

Oscillating Panels Mounted on a Wedge with Semi-
Wedge Angle o =2°

Effect of Reduced Frequency on Generalized
Aerodynamic Forces for Oscillating Panels (M= 5.0,
c=2°,N=2)

Paneling Scheme of SAAB Canard-Wing

GAF Q,; of SAAB Canard-Wing vs. Mach Number:
Mode 1 Wing Plunging and Mode 2 Canard Pitching
about Midchord

ix

g
[
[¢]

71

71

75

82

&3

&3

84

85

85
86



5.9
5.10

5.11

6.1

7.1
7.2
7.3
7.4
75

7.6

LIST OF FIGURES (cont.)

Flutter Speeds and Flutter Frequencies:

a) vs. Mach Number Predicted by Various Methods:
70° Delta Wing with and without Thickness

b) fora 15° Swept Untapered Wing (A= 1.3 and 3.0)

Surface Pressure of a Wedge According to Various
Supersonic/Hypersonic Models: 1 =tan 10°;, y=14

Oscillating Leading-Edge Flap of a Thin Wedge Airfoil:
c=2°

Unsteady Pressure Distribution for an Oscillating
Leading Edge Flap with Hinge Line at Quarter Chord:
(M=24,k=0.5,c=3°)

Spline Axis Coordinate System a) Spline Axis Along the
Elastic Axis of Wing-Like Component, b) Spline Axis
Along the Center Line of Body-Like Component

AGARD 445.6 K-Method Flutter Results (ZONAS6),
M=0.9, p=0.000193 slug/ft’

AGARD 445.6 P-K Method Flutter Results (ZONAS6),
M=0.9, p=0.000193 slug/ft’

Jet Transport Wing at M=0.0 at Sea Level using:
a) K-Method, b) P-K Method

Generalized Aerodynamic Forces vs. Reduced Frequency
of the 15° Sweptback Wing at A= 0.45, 4 Modes

V-g and V-f Diagrams of the 15° Sweptback Wing at
M=0.45

Search History of the Reduced Frequency-Sweep
Technique at V= 500 ft/sec, a) Imaginary Damping and
b) Real Damping

89

94

95

108

121

123

124

129

130

131



7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

LIST OF FIGURES (cont.)

Search History of the Reduced Frequency-Sweep
Technique at V=600 ft/sec

V-g and V-f Diagrams of the BAH Wing, M= 0.0,
10 Modes

Generalized Forces of 2 D.O.F. Airfoil, C.G.
@ 37% Chord (HA145A1), M= 0.0, 2 Modes

2 D.OF. Airfoil, C.G. @ 37% Chord (HA145A1),
M=10.0, 2 Modes

Damping and Frequency vs. Velocity of 2 D.O.F. Airfoil,
C.G. @ 37% Chord (HA145A1), M= 0.0, 2 Modes

Damping and Frequency vs. Velocity of 2 D.O.F. Airfoil,
C.G. @ 45% Chord (HA145A2), M= 0.0, 2 Modes

Damping and Frequency vs. Velocity of 3 D.O.F. Airfoil,
C.G. @ 37% Chord (HA145A2), M= 0.0, 3 Modes

Damping and Frequency vs. Velocity of 3 D.O.F. Airfoil,
C.G. @ 45% Chord (HA145A2), M= 0.0, 3 Modes

Johnson Configuration Generalized Aerodynamic Forces,
M=0.84, 17 Modes

Damping and Frequency vs. Velocity of Johnson
Configuration, M = 0.84, 17 Modes

134

135

135

136

137

138

138

139



FOREWORD

This final report is submitted in fulfillment of CDRL CLIN 0001, Data Item AO001, Title:
Scientific and Technical Reports of a Small Business Technology Transfer (STTR) Phase II
contract No. F33615-96-C-3217 entitled, “Development of the Aerodynamic/Aeroservoelastic
Modules in ASTROS,” covering the performance period from 24 September 1996 to 24
September 1998.

This work is the second phase of a continuing two-phase STTR contract supported by
AFRL/Wright-Patterson. The first phase STTR contract No. F33615-95-C-3219 entitled,
“Enhancement of the Aeroservoelastic Capability in ASTROS,” was completed in May 1996 and
published as WL-TR-96-3119.

Both STTR Phase I and Phase II contracts are performed by the same ZONA Team in which
ZONA Technology, Inc. is the prime contractor, whereby the team members include: the
University of Oklahoma (OU), Universal Analytics, Inc. (UAI), and Technion (I.T.T.).

This final report consists of eight volumes, these are:

ASTROS*

Volume I - ZAERO User’s Manual

VolumelI - ZAERO Programmer’s Manual

VolumeIII - ZAERO Application Manual

Volume IV - ZAERO Theoretical Manual

ASTRQServo

Volume I - Aeroservoelastic Discipline in ASTROS, User’s Manual
VolumeII - Aeroservoelastic Discipline in ASTROS, Programmer’s Manual
Volume III - Aeroservoelastic Discipline in ASTROS, Application Manual
Volume IV~ - Aeroservoelastic Discipline in ASTROS, Theoretical Manual

This document (Vol. IV) is a Theoretical Manual of the ZAERO module, seamlessly integrated
into ASTROS (called ASTROS*). The contributors are: P.C. Chen, D.D. Liu and D. Sarhaddi
of ZONA Technology, Inc.

At AFRL/Wright-Patterson, Capt. Gerald Andersen is the contract monitor and Dr. V.B.
Venkayya is the initiator of the whole STTR effort. The technical advice and assistance received
from Mr. Doug Niell of The MacNeal Schwendler Corporation, Dr. V.B. Venkayya and others
from AFRL during the course of the present phase on the development of ASTROS* are
gratefully acknowledged.
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1.0 INTRODUCTION

Supported by AFRL/VA under a three-year STTR contractual effort, ZONA Technology has
successfully completed the seamless-integration of the ZAERO module with ASTROS
(Automated Structural Optimization Systems). ZONA Technology (ZONA) and its team
members: University of Oklahoma, Universal Analytics, Inc. and Technion, have further
validated and tested the ZAERO/ASTROS (called ASTROS*). Utilizing ZAERO, ZONA and
Technion have developed an Aeroservoelastic (ASE) module for ASTROS* during the
contractual period (called ASTROServo).

ZAERO is ZONA’s unsteady/steady aerodynamic program that contains four essential modules,
namely: the AGM (Aerodynamic Geometry Module), the 3D Spline Module, the UAIC (Unified
Aerodynamic Influence Coefficient Module) and the Flutter Module. Central in ZAERO is the
UAIC module, which renders ZAERO applicable to complex aircraft configurations covering all
Mach numbers ranging from subsonic, transonic, supersonic to hypersonic flight regimes.

The functionality of ZAERO is to provide ASTROS a much improved acrodynamic module
which, as opposed to the existing DLM/CPM and USSAERO codes, unifies all Mach number
and generates high-fidelity wing-body configurated aerodynamics for advanced aeroelastic
analysis/design applications in an ASTROS/MDO environment. Thus, when interfaced with the
ASE module, ZAERO/ASTROS or ASTROS* can perform aircraft design/analysis with
additional aeroservoelastic constraints.

In this section, we will briefly describe:

Overview

ZAERO/UAIC: A Unified AIC-Based Aerodynamic Module
ZAERO/UAIC and ASE Modules in ASTROS

Other new ZAERQO modules in ASTROS: AGM, 3D Spline and Flutter

1.1 Overview

For modern aeroelastic methodology, preference to the Computational Fluid Dynamics (CFD)
methods or the Aerodynamic Influence Coefficient (AIC) methods for aeroelastic applications
has been the subject of much discussion. Here, we refer to both methodologies as a part of
computational aeroelasticity. In general, our concept of computational aeroelasticity consists of
Aeroelastic Modeling Methodology, which includes AIC methods, structural FEM, spline
methods and flutter solution methods, etc., and Aeroelastic Simulation Methodology, which
includes CFD methods, closely-coupled CFD/CSD interfacing method, etc. (Figs 1.1, 1.2). In
our estimation, there should exist little conflict in the choice of these two methodologies if we
are directed towards a holistic approach for aeroelastic applications. Rather, they should
compliment each other if their practices could follow the proposed global strategy as shown in
Figs 1.1 and 1.2.
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While both methodologies can cope with configurations of complex geometry in high fidelity,
AIC methods can provide expedient amplitude-perturbed eigen solutions in the k-domain and the
s-domain. Rapid flutter solutions can be readily obtained by several standard flutter methods.
For this reason, AIC methods are preferred by industries.

Moreover, application of AIC methods to aeroservoelasticity and the Multidisciplinary Design
Optimization (MDO) environment is straightforward. In terms of aeroelastic applications, they
should provide selected critical conditions for CFD methods to fine tune the unsteady
aerodynamics in a confined flow regime, thus saving substantial computing effort in search of
potential flutter solutions. '

On the other hand, the utilization of CFD methods is to link up with a structural FEM via a
closely-coupled CFD/CSD interfacing, such as the BEM solver (Ref 1.5), as indicated in Figs 1.1
and 1.2. Clearly, CFD methods are required when more accurate solutions become mandatory in
a flow regime where nonlinearity dominates (e.g. thick wing in supercritical flow, high-angle-of-
attack flow with vortex dynamics).

For classical-flutter predictions, the flow nonlinearity could be linearized through a robust
indicial method routine in conjunction with a proposed modal AIC method. In this way, CFD
solutions could be carried over to the k-domain for its subsequent participation to
aeroservoelasticity and MDO applications. For applications in static aeroelasticity, the proposed
modal AIC method can be an expedient means in utilizing CFD solutions to generate a flexibility
correction to the measured rigid load. Therefore, it is clear that an effective AIC method with
sufficiently high-fidelity modeling capability remains to be the backbone of computational
aeroelasticity.

Towards this end, a Unified Aerodynamic Influence Coefficient (UAIC) method for arbitrary
wing-body configurations has been developed that covers the complete flight regime of subsonic,
transonic, supersonic and hypersonic Mach numbers. This unsteady/steady UAIC methodology
has been further established as a computer module, known as the ZAERO/UAIC module. The
ZAERO/UAIC module is a stand-alone -aerodynamic module, which can be interfaced with
existing FEM programs such as NASTRAN and ASTROS. Under a two-year AFRL/Wright Lab
contractual support, a seamless integration of the ZAERO/UAIC module into ASTROS is
successfully completed. Fig 1.3 shows the integrated ASTROS/ZAERO program architecture.
This theoretical manual attempts to describe the theoretical formulations of ZAERO, with special
emphasis on UAIC formulation and its applications in each flow regime.

1.2 ZAERO/UAIC: A Unified AIC Based Aerodynamic Module

The ZAERO/UAIC module consists of four major unsteady aerodynamics codes that jointly
cover the complete domain of all Mach number ranges, namely ZONA7U (formerly ZONAS51U),
ZONAG6, ZONA7 and ZTAIC. As can be seen in Fig 1.4, the aero modules currently integrated
within MSC/NASTRAN and ASTROS only have the purely subsonic and supersonic
capabilities.




The development of the ZAERO module has been the major endeavor of ZONA Technology in
the last decade. The following is a brief account for the capability of the computer codes within
the ZAERO module.
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ZONAG6/ZONA7: Generates Unsteady Subsonic/Supersonic__Aerodynamics _for Aircraft
Configurations with External Stores

Prior to 1990, all unsteady aerodynamic methods for aeroelastic computations were based on
low-order lifting-surface models (e.g. DLM, Refs 1.6, 1.7). The low-order formulation of these
lifting-surface methods renders input complexity in dealing with general planform
configurations. Most importantly, the aerodynamic effects due to the presence of bodies and due
to wing-body interference were largely ignored. Meanwhile, the coupled external-store wing
flutter, a problem that is of frequent concern to modern aeroelasticians, can no longer be resolved
by lifting surface modeling alone. For this reason, development of methods such as ZONA6 and
ZONA7 are mandatory (Refs 1.8, 1.9).

The main features of ZONA6 and ZONA7 include:

e ZONAG6 generates steady/unsteady subsonic aerodynamics for wing-body/aircraft
configurations with external stores/nacelles including the body-wake effect.

e ZONAG is based on a higher-order panel formulation for lifting surfaces than the Doublet
Lattice Method (DLM). Cases studied confirm the ZONAG6 robustness over the DLM.

e Panel formulation of ZONA7 for lifting surface is identical to that of ZONASI — now the
industrial standard method for supersonic flutter analysis in MSC/NASTRAN.

e ZONA6 and ZONA7 can model any combinations of planar/nonplanar lifting surfaces with
arbitrary bodies such as fuselage, stores, tip missiles, or their combinations.

e High-order paneling of ZONA6 and ZONA7 allows high-fidelity modeling of complex
aircraft with arbitrary stores/tip missile arrangement.

For further details in the background, application examples and theoretical formulation of
ZONAG6 and ZONA7, the reader is referred to Section 3.0.

ZTAIC: Generates Unsteady Transonic Aerodynamics for Lifting Surface Systems

Since 1985, ZONA has been following up on the development of the Transonic Strip (TES)
Method (Refs 1.10, 1.11) for unsteady flow computations of arbitrary wing planforms. The TES
method consists of two consecutive steps, to a given nonlinear Transonic Small Disturbance
Code such as ZTRAN, namely the chordwise mean flow correction and the spanwise phase
correction. The spanwise correction procedure is further enhanced by a recently uncovered
generalized relation obtained according to Oyibos' separability principle.

Based on the TES concept, ZONA's Transonic Aerodynamic Influence Coefficient (ZTAIC)
method is developed to fully automate the computation procedure resulting in a modal-based
AIC matrix (Ref 1.12). The computation procedure requires direct pressure input from a set of
computed or measured data. Otherwise, it does not require airfoil shape or grid generation for a
given planform. Meanwhile, all the mean-flow shock jumps are properly included in the
resulting unsteady aerodynamics through the AIC formulation. The unsteady pressures can




readily be solved on the surfaces of a lifting surface system according to the following modal-
based AIC formulation, i.e.

{AC,} = [MAIC] {h}

where [MAIC] = [AC,-(#" ¢)" 4" ] , 4 is the base-line modes. AC,, is the computed
pressure due to ¢, and 4 is the given modes which expressed in terms of ¢.

The main features of ZTAIC include:

e ZTAIC generates unsteady transonic modal AIC using externally-provided steady mean
pressure.

o ZTAIC adopts steady pressure input (provided by measurement or CFD), whereby:
- no grid generation is required, and
- the correct unsteady shock strength and position are ensured.

e The modal AIC of ZATIC as an archival data entity allows:
- repetitive aeroelastic analysis and structure design.
- the ease of application of the K / P-K / g methods for flutter analysis.

e ZTAIC is readily integrated with ZONAG6 as a unified subsonic/transonic AIC method for
complex aircraft configurations.

e Additional input to ZONAG6 amounts to only the provided steady pressure data.

For further details in the background, application examples and theoretical formulation of
ZTAIC, the reader is referred to Section 4.0.

ZONA7U:  Generates Unified Unsteady Hypersonic/Supersonic_Aero-dynamics for Lifting
Surface Systems and Wing-body Configurations

A Unified Supersonic/Hypersonic Lifting Surface Method has been developed recently (Refs
1.13, 1.14). This method combines the Supersonic Lifting Surface Theory (such as ZONAS1, -
Ref 1.15) with a nonlinear thickness correction matrix Ey, based on a composite third-order
theory, which is rendered uniformly valid throughout the hypersonic/supersonic regime, i.e.

{ACe} = [D+pET" {w}

where D is the linear supersonic downwash matrix provided by ZONAS1 and u is a switching
function that operates on the nonlinear thickness matrix E for compression and expansion waves.
This correction matrix takes the flow nonlinearity as well as the flow rotationality due to shock
waves into account, which covers both the Mach-wave and Newtonian limits. For aeroelastic
applications, ZONAS51U has been applied to various wing planforms with thickness
distributions. Superseding ZONA51U, ZONA7U integrates ZONAS51U into ZONA7 in that the
lifting surfaces are subject to unified hypersonic/supersonic aecrodynamics.

The main features of ZONA7U include:



e ZONA7U generates unified hypersonic and supersonic steady/unsteady aerodynamics for
wing-body/aircraft configurations with external stores/nacelles.

e Nonlinear thickness effects of ZONA7U yields good agreement with Euler solution and test

data.

Steady solutions approach linear and Newtonial limits.

Confirms hypersonic Mach independent principle.

Results/formulation are superior to Unsteady Linear Theory and Piston Theory.

ZONA7U usually results in more conservative flutter boundaries than other methods.

Unified with ZONA?7 and is therefore applicable to all Mach numbers > 1.0.

Additional input to ZONA7 amounts to only wing root to wing tip sectional thickness

profiles.

For further details in the background, application examples and theoretical formulation of
ZONA7U, the reader is referred to Section 5.0.

13  ZAERO/UAIC and ASE Modules in ASTROS

According to the ASTROS/ZAERO program architecture (Fig 1.3), database entities (such as
MAIC) generated by the ZAERO module are computed during the ASTROS preface phase and
need not be recomputed in the ASTROS analysis/optimization loop. Meanwhile, computation of
the ZAERO module is triggered by the new bulk data entry MKAEROZ which specifies the
Mach number, reduced frequencies, method flags and the mean flow conditions.

The development of an aeroservoelasticity (ASE) module, based on the ZAERO/UAIC
aerodynamics, and its integration with ASTROS has been completed. The ASE module will
facilitate the inclusion of multi-input multi-output (MIMO) control system effects on the
dynamic stability and response in the ASTROS multidisciplinary analysis and design
optimization software package. Its overall capabilities include:

e Provide closed-loop robust stability analysis.

e Add continuous gust response capabilities.

o Allow the inclusion of stability and gust-response constraints in structural design
optimization. :

e Allow the inclusion of user-defined control parameters of a given control law in the
multidisciplinary optimization process.

e Export an efficient state-space representation of the aeroservoelastic system for subsequent
analysis and control synthesis with commercially available tools such as MATLAB and
MATRIX x.

ASE mandates the s-domain aerodynamics as a base, which can be obtained from the k-domain
aerodynamics by means of several rational approximation methods. Among existing methods
the minimum-state approach (MIST) is selected here because it offers significant savings in the
number of added states with little or no penalty in the accuracy of modeling the aerodynamic
forces. The minimum-state approach converts the generalized aerodynamic forces Q(iw) to Q(s)
in the following form:

2
0 = A + 4 .f,’i + % (.g) +DFOE [7”)




where f(s) = %I -R and 4 are the real-value approximation matrices, R is a diagonal

matrix with distinct negative terms representing the aerodynamic lags, and D and E are
aerodynamic coupling matrices between the modal and aerodynamic states.

For further details in the background, application examples and theoretical formulation of the
ASE module utilizing ZAERO/UAIC, the reader is referred to Ref 1.16, 1.17 and 1.18.

1.4  Other New ZAERO Modules in ASTROS: AGM, 3D Spline and Flutter
ZAERO also includes three other new modules in ASTROS (Fig 1.4). These are: the
Aerodynamic Geometry Module (AGM), the 3D Spline Module and the Flutter Module. The

essential features of these modules are briefly described as follows.

Aerodynamic Geometry Module (AGM)

The AGM module is capable of modeling any full aircraft configuration with stores and/or
nacelles. A complex aircraft configuration can be represented by the AGM module by means of
wing-like and body-like definitions. Any modifications to the AGM module, such as input
geometry enhancements, will have minimal impact on other general modules.
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Fig 1.5 The Aerodynamic Geometry Module (AGM) of ZAERO



3D Spline Module

The 3D Spline module establishes the displacement/force transferal between the structural Finite
Element Method (FEM) model and the ZAERO aerodynamic model. It consists of four spline
methods that jointly assemble a spline matrix. These four spline methods include: (2) Thin Plate
Spline; (b) Infinite Plate Spline; (c) Beam Spline and (d) Rigid Body Attachment methods. The

spline matrix provides the x, y and z displacements and slopes in three dimensions at all
aerodynamic grids.

FEM Model Aerodynamic Model

First Body Bending Mode

NACA L51F07 Wing-Body Configuration with Three Structural Modes.

Fig 1.6 The 3D Spline Module of ZAERO




Flutter Module

The ZAERO flutter module contains two flutter solution techniques: the K-method and the P-X
method. The K-method is a new contribution of ZAERO to ASTROS. For further details on the
background and the theoretical formulation of the 3D Spline Module and the Flutter Module, the
reader is referred to Sections 6.0 and 7.0, respectively.

Lastly, we remark that in parallel to seamlessly integrated ZAERO and ASE modules in

ASTROS, the stand-alone ZAERO and ASE modules are being developed which should be
readily interfaced with other systems such as NASTRAN.

10




2.0 AEROELASTICITY FOUNDATION OF ZAERO

In this section, we will discuss:

e fundamentals of aeroelasticity.

e aecroelastic matrix equations of ZAERO for flutter analysis.

e three disciplines that are required to generate the aeroelastic matrix equations, namely the
structural finite element method, the unsteady aerodynamic methods, and spline methods.

Since the structural finite element method (FEM) is a well-established methodology, no detailed
description of the formulation for the generation of the structural matrices will be given. For the
unsteady aerodynamic methods, the concepts of amplitude linearization, modal approach and
frequency-domain formulation for the generation of Aerodynamic Influence Coefficient (410),
leading to an eigenvalue problem for the flutter analysis, will be discussed in detail.

2.1  Fundamentals of Aeroelasticity

Aeroelastic response of flight vehicle is a result of the mutual interaction of inertial and elastic
structural forces, aerodynamic forces induced by the static or dynamic deformation of the
structure, and external disturbance forces. The equation of motion of the aeroelastic system in
terms of discrete system can be derived based on the equilibrium condition of these forces, i.e.:

M) + Kx(t) = F(@®) 2.1)

where M and K are the mass and stiffness matrices generated by the structural finite element
method. x(¢) is the structural deformation.

The structural damping matrix is excluded in Eq 2.1 for simplicity, but it can be easily included.
In Eq 2.1, the terms MZX(s) and K x(7) are the inertial and elastic structural forces,

respectively, whereas F(¢) represents the aerodynamic forces applied on the structure. F(¢) can
be generally split into two parts; the aerodynamic forces induced by the structural deformation
F,(x) and the external forces F,(¢),1.e.:

F(r) = F,(x) + F,() | 2.2)

The external forces F,(f) are usually provided. Typical example of F,(¢) is the continuous
atmospheric turbulence or impulsive-type gusts. The generation of F, (x) normally relies on the
theoretical prediction that requires the unsteady aerodynamic computations. Since F,(x)

depends on the structural deformation x(£), the relationship can be interpreted as an acrodynamic
feedback. Fig 2.1 presents a functional diagram that illustrates the aeroelastic interaction of
these structural and aerodynamic forces.
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Fig 2.1 Aeroelastic Functional Diagram

Without the aerodynamic feedback, Fig 2.1 reduces to an open-loop forced-structural vibration
system whose response amplitude is usually finite. With the inclusion of F,(x), Fig 2.1

represents a closed-loop dynamic response problem which can be expressed by the following
equation:

Mi() + Kx(t) - F,(x) = E,() (2.3)

Eq 2.3 is obtained by combining Eq 2.1 and Eq 2.2. The left hand side of Eq 2.3 is in fact a
closed-loop aeroelastic system which can be self-excited in nature. This gives rise a stability
problem of the closed-loop aeroelastic system known as flutter. Flutter analysis usually involves
the search of the structural stability boundary of an aircraft structure in terms of its flight speed
and altitude or the corresponding dynamic pressure. If F,(x) is a nonlinear function with respect

to x(?), the flutter analysis must be performed by a time-marching procedure solving the
following equation:

M) + Kx() - F,(x) = 0 (2.4)
with initial condition of x(0) and x(0) being specified at 1=0.

The stability boundary of the aeroelastic system is then determined by examining the decay or
growth of the structural response x(f) with respect to the flight speed. This time-marching
computational procedure is rather costly since it generally requires a nonlinear time-domain
unsteady aerodynamic method known as the Computational Fluid Dynamics (CFD) method.
However, the conventional industrial practice of flutter analysis is to recast Eq 2.4 into a set of
linear systems and to determine the flutter boundary by solving the complex eigenvalues of the
linear systems. Such a procedure involves the assumption of amplitude linearization. The
amplitude linearization states that the aerodynamic response varies linearly with respect to the
amplitude of the structure deformation in a given aircraft motion if the amplitude is sufficiently
small at all times.

Since flutter analysis is a dynamic aeroelastic stability problem, the required amplitude for
determining such a stability boundary can be assumed to be mathematically infinitesimal. This
follows that the amplitude linearization assumption could recast Eq 2.4 into an eigenvalue
problem for flutter analysis. In this case, the aerodynamic system can be approximated by a
linear system for which an aerodynamic transfer function can be defined. This transfer function

12



relates the aerodynamic feedback F,(x) to the structural deformation x(#) by means of the
following convolution integral, i.e.:

¢
F,(x) = Iqwﬂ(%(z‘-t))x(t) du (2.5)
0
where:
g-H represents the aerodynamic transfer function
9w is the dynamic pressure.
L is the reference length and is generally defined as:
L= % where c is the reference chord
and:
vV is the velocity of undisturbed flow.

The Laplace domain counterpart of Eq 2.5 is simply:

F,(x()) = 4. ﬁ(%’—*)x(s) 2.6)

where:

H is the Laplace domain counterpart of H

With Eq 2.6 at hand, Eq 2.4 can be readily transformed into the Laplace domain and results in an
eigenvalue problem in terms of s. This reads:

[s2ﬁ+lz—qwﬁ(%/£)]x(s)=0 | @7

Since the finite element model of aircraft structure normally contains a large amount of degrees
of freedom, the size of the mass and stiffness matrices are usually very large. Hence, solving the
eigenvalue problem of Eq 2.7 directly would be computationally costly. To circumvent this
problem, one introduces the “modal approach” which can be expressed as:

x=0gq ‘ - (2.8)
where @ is the modal matrix whose columns contain the lower order natural modes. Normally,
no more than ten numbers of the lowest natural modes are sufficient for the flutter analysis of a

wing structure. For the whole aircraft structure, fifty natural modes are usually sufficient. q is the
so-called generalized coordinates which are the eigenvectors to be determined.
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The rationale of the modal approach is based on the premises that the critical flutter modes are
usually due to the coupling of the lower order structural modes. Thus, the structural deformation
of the flutter mode can be sufficiently represented by the superposition of lower order modes.

Substituting Eq 2.8 into Eq 2.7 and pre-multiplying Eq 2.7 with® T yield the dynamic (or the
flutter) equation:

L

[s2M+K-qu(fI—/—):|q=0 (2.9)
where: :

M= o' Mo is the generalized mass matrix (2.10)

K=0"Ko is the generalized stiffness matrix (2.11)
and:

sL TH,9 L . . . .
Q( —I;_—) =@ H( 7 )® is the generalized aerodynamic forces matrix. (2.12)

Since the size of the matrices in Eq 2.9 is in the order of number of modes, the modal approach
provide a reduced size of the eigenvalue problem for the flutter analysis that is expressed in the
generalized coordinates. Solving such a reduced size eigenvalue problem is computationally
much more efficient than that of Eq 2.7. Eq 2.9 is generally referred as the classical flutter
matrix equation.

The above discussion shows that reducing the time-domain, generally non-linear flutter equation
(Eq 2.4) to the classical flutter matrix equation (Eq 2.9) lies in the availability of the
aerodynamic transfer function. However, the generation of aerodynamic transfer functions in the
Laplace domain by solving unsteady aerodynamics can be a very complicated procedure. For
this reason, unsteady aerodynamic methods are often formulated in the frequency domain by
assuming simple harmonic motion. The frequency-domain aerodynamic transfer function in
matrix form is called the Aerodynamic Influence Coefficient (AIC) matrix. In fact, the major
functionality of ZAERO is to generate such A/C matrices for the aircraft configuration. This will
be briefly discussed in the following section.

2.2 Unified AIC of ZAERO

Four unsteady aerodynamic methods are incorporated in ZAERO, namely ZONA6, ZONA7,
ZTAIC and ZONA7U that jointly generate the 4IC matrices covering the complete domain of
Mach number range. Theses ZAERO generated A/C matrices are called the unified AIC for their
unified feature in Mach number range.

ZONAS6 and ZONA7 solve the integral equations due to the respective unsteady linearized small-
disturbance subsonic and supersonic equations for general aircraft configurations. The integral
equation is formulated in the reduced frequency domain which is in the context of the simple
harmonic motion. The reduced frequency, denoted as £, is a fundamental unsteady acrodynamic
parameter defined as:
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p=2% 2.13)

where:
@ is the harmonic oscillatory frequency.

Panel method is adopted by ZONA6 and ZONA7 to solve the integral equations. The panel
method requires the aircraft configuration to be discretized into many small panels. Each panel
is defined as “aerodynamic box”. Fig 2.2 shows a typical panel model of a wing-body
configuration.
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Fig 2.2 Typical panel model of a wing-body configuration

Each aerodynamic box contains a control point where the boundary condition is imposed.
According to the panel model, the integral equation is then approximated by the summarization
of elementary integrals associated with each aerodynamic boxes. The assembly of the
elementary integral solutions gives a matrix whose coefficients represent the aerodynamic
influence of aerodynamic boxes to control points. This matrix is called the Aerodynamic
Influence Coefficient (AIC) matrix which relates the structural deformation to the aerodynamic
forces by:

F, = g, [4IC(ik)] n (2.14)
where:

h is the structural deformation defined at the aerodynamic boxes

Fn is the resultant aecrodynamic forces at the aerodynamic boxes due to h.
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Comparing Eq 2.4 with Eq 2.6, one can see that g, [ 4/C(ik) ] is indeed the aerodynamic
transfer function, except that:

e AIC matrix is computed in the reduced-frequency domain (k-domain) rather than the
Laplace domain.

e AIC matrix is computed based on the panel model which is, in general, considerably
different from its respective structural finite element model. This gives rise the
problem of displacement and force transferal between these two models. These
issues can be resolved by a spline matrix that relates or interpolates the
displacements at structural finite element grid points to those at aerodynamic panel
model. The derivation of spline matrix will be discussed later. The detailed
theoretical background of ZONA6 and ZONA7 is discussed in Section 3.

The ZTAIC method computes the unsteady aerodynamics for transonic flows. It requires the
steady pressure distribution input from the users. ZTAIC utilizes an inverse design method for
airfoil design by solving the transonic small-disturbance equation. These airfoil sections produce
the steady pressure distribution that matches input steady pressure. Unsteady pressure
coefficients on the airfoil sections are then computed by solving the unsteady transonic small
disturbance equation. These unsteady pressure coefficients are used to correct the linear
unsteady pressure computed by ZONAG6 for the transonic shock effects. At the end, ZTAIC
employs a modal AIC approach to reconstruct the A/C matrix computed by ZONAG6, leading to a
transonic A/C matrix. For detailed theoretical description, see Section 4 for the formulation of
the ZTAIC method.

ZONA7U is a unified supersonic/hypersonic unsteady aerodynamic method. This method
combines the supersonic lifting surface aerodynamics of ZONA7 with a nonlinear correction
matrix based on Donov & Linnell’s uniformly-valid, high-order Hypersonic/Supersonic Scheme.
This correction matrix takes the flow nonlinearity as well as the flow rotationality due to
oscillatory shock waves into an account, which covers both the Mach wave and Newtonian
limits. The only additional input for ZONA7U is the sectional airfoil thickness distribution.
ZONAT7U generates the AIC matrix that is in the same form of that of ZONA7.

The detailed theoretical formulations of ZONA7U is discussed in Section 5.
2.3  Functionality of the Spline Matrix
The problem of data transferal between the panel model and the structural finite element model
usually amounts to the displacement transferal from the structural grid points to the aerodynamic
control points of the panel model and that of the forces from the aerodynamic control points to
structural grid points. ZAERO provides a spline module which generates a spline matrix G such
that:

h=Gx (2.15)

Note that h is defined by the aerodynamic control points whereas x by the structural finite
element grid points. Four methods are incorporated in the spline module, namely the beam
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spline method, infinite plate spline method, thin-plate spline method and rigid-body attachment
method. These four spline methods jointly construct the spline matrix G for the displacement
transferal. The detail formulations of these four spline methods are discussed in Section 6.

Once the spline matrix G is generated, the force transferal from the aerodynamic control points
to structural grid points can be performed accordingly:

F, = GTF, (2.16)

Eq 2.16 is derived based on the principle of virtual work. Since the forces at aerodynamic boxes
F,, and their structurally equivalent values F, must do the same virtual work in their respective
displacements, we have:

oh” F, = &"F, (2.17)

where:
Sh and 8x are virtual displacements.

Substituting Eq 2.15 into the left-hand side of Eq 2.17 and upon rearranging, yields:
&' (F, -G™F, )=0 (2.18)

Because of the arbitrariness of the virtual deflection, i.e. 8x # 0, the terms in the bracket of Eq
2.18 must vanish, which leads to Eq 2.16. With Eq 2.15 and Eq 2.16 at hand, the aerodynamic
feedback acting at the structural grid points can be obtained. Combining Eq 2.14 and Eq 2.15
and substituting the resultant equation into Eq 2.16 yield:

F, = g, G"[4IC(ik) ]G x (2.19)

Again, note the similarity between Eq 2.19 and Eq 2.6. The generalized aerodynamic forces
matrix in the £-domain can be obtained and computed by applying the modal approach:

Q(ik) = ®* GT [ 4IC(ik) | G @ (2.20)

The k-domain Q(ik) results from the reduction to the simple harmonic motion (frequency
domain) from the transient motion (Laplace domain) introduced previously in the unsteady
aerodynamic formulation. The impact of £-domain Q(ik) on the solution technique required to
solve the classical flutter matrix equation will be discussed in the following section:

2.4  Impact of Q(ik) on Flutter Solution Technique
The reduction to the harmonic motion introduced in the previous unsteady aerodynamic
formulation indicates that the k-domain Q(ik) is valid only for steady state response of the

structure. This also implies that the flutter solution is valid only at the flutter boundary where
damping of the aeroelastic system is zero. Since the generalized aerodynamic forces matrix is

17




available only in the frequency domain, the frequency-domain counterpart of Eq 2.9 can be

obtained by replacing Q(%) by Q(ik) ands by i@ . This gives:

[-0®*M + K - g, Q(ik)] q =0 (2.21)
As a stability measure, an artificial structural damping is added to Eq 2.21:
[-0®M + (1 +ig,)K - g, Q(ik)]q = 0 (2.22)

where:
-2 is the added artificial structural damping.

Eq 2.22 is the so-called K-method flutter equation. It is mathematically consistent with the
assumption of simple harmonic motion introduced in the unsteady aerodynamic formulation.
But its predicted damping is only an artifice used to seek out the flutter point and cannot be
interpreted as having a physical significance as a measure of decay rate of the aeroelastic
response.

While the K-method flutter equation is capable providing the prediction of the flutter boundary,
e.g. flutter speed at zero damping, it is often desired to have a reliable damping prediction to
detect the aeroelastic characteristics at sub-critical flight speeds. The predicted damping values at
sub-critical flight speeds can serve as a guideline for conducting wind tunnel or flight flutter
tests. It is for this reason that the P-K method is widely adopted by aeroelasticians as the
primary tool for finding flutter solutions. In Eq 2.9, the P-K method replaces the Laplace

domain generalized aerodynamic forces matrix Q(%) by Q(ik); and it further defines a non-

dimensional Laplace parameter p such that:

p == Ok + i) (2.23)
where:
¥ is the transient decay rate coefficient,
In this way, Eq 2.9 becomes:
& 2
(—P—JM p +K-4q,QGk)|q=0 (2.24)

For a given Q(ik), the P-K method solves the complex eigenvalues of Eq 2.24 in terms of p. Eq
2.24 is solved at several given values of V and ¢, , for complex eigenvalues p associated with
modes of interest. This is accomplished by an iterative procedure that matches the reduced
frequency £ to the imaginary part of p for every structural mode.
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Strictly speaking, the P-K method is mathematically inconsistent because Q(ik) is obtained by
the simplification of simple harmonic motion (or by applying the Fourier Transform) but other
terms in Eq 2.24 are associated with the transient motion (or by applying the Laplace
Transform). However, it is generally believed that the P-X method is a good approximation
method in finding the rate-of-decay type of solution. The rationale for the P-K method is that
for simple harmonic motion with slowly increasing or decreasing amplitude, the generalized
aerodynamic force based on constant amplitude are good approximations.

The detailed formulations and the solution technique of the K-method and the P-K method will
be discussed in Section 7. In Section 7, a newly developed flutter solution method developed by
ZONA Technology called the g-method will also be presented. The g-method includes a first
order damping term in the flutter equation that is rigorously derived from the Laplace-domain
aerodynamics. The g-method generalizes the K-method and the P-X method and could provide
unlimited roots of the flutter equation. The extra roots obtained by the g-method are associated
with the aerodynamic lag root which could not be otherwise obtained by the two methods. The
superiority and the physical significance of the g-method will also be discussed in Section 7.
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3.0 ZONAG6/ZONA7: UNSTEADY SUBSONIC / SUPERSONIC
AERODYNAMICS FOR WING-BODY AIRCRAFT
CONFIGURATIONS WITH EXTERNAL STORES

ZONA6 and ZONA7 solve the respective unsteady three-dimensional linearized small-
disturbance potential equations of subsonic and supersonic aecrodynamics. Their unique feature
lies in the capability of modeling realistic configurations such as an aircraft/wing-body
combination including external stores or nacelles. In this section, we will discuss:

e Background of ZONA6 and ZONA7.

e Derivations of unsteady boundary condition and pressure coefficient.
Derivations of the unsteady linearized small-disturbance equations and their corresponding
integral equations.

e Formulation of panel method employed by ZONA6 and ZONA7 for solving the integral
equations.
Generation of their Aerodynamic Influence Coefficient (AIC) matrices.
Treatments of body-wake effect in subsonic flow.
Treatments of inlet boxes and superinclined aerodynamic boxes in supersonic flow.

3.1 Backgrounds of ZONA6 and ZONA7

Since 1985, ZONA has been devoting its R&D effort to the development of unsteady
aerodynamic methods for aeroelastic applications. The first ZONA software product for
supersonic lifting surface unsteady aerodynamics is the ZONAS1 code. ZONAS1 employs the
acceleration-potential approach for thin-wing type of lifting surfaces (Ref 3.1). This
acceleration-potential approach is the outgrowth from the Harmonic Gradient Method (HGM)
developed by Chen and Liu in 1985 (Ref 3.2). Today, ZONAS1 is the industrial standard
method for supersonic lifting surface unsteady aerodynamics in MSC/NASTRAN - Aero Option
II (Ref3.3).

In Figs 3.1 and 3.2, computed results of Re(AC,) and Im(AC,) of a flat plate undergoing

plunging and pitching motion about the leading edge are presented. It can be seen that the results
computed by ZONAS1 are in better agreement with Jordan’s exact solution (Ref 3.4) than that of
HGM. The close agreement with Jordan’s result near the trailing edge is attributed to an exact
treatment of linearized pressure in the acceleration-potential formulation of ZONAS1.

At the National Aeronautical Establishment (NAER) Canada, Lee (Ref 3.5) has performed a
comparative study on computed pressures for an oscillating leading-edge flap on the F-18 wing
at 58.8% span and at M = 1.1 and reduced frequency k = 4.0 (see Fig 3.3). Two computer codes
are used: the ZONAS1 code and the SPIP code (Ref 3.6).
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Leading Edge at M =1.25 and k= 2.0

In Fig 3.4, computed results show that the ! v
expected pressure jump at the hinge line is : I

well predicted by ZONAS1 using 126 N
panels. The results obtained by the SPIP Y
code, however, depend on the number of
quadrature points chosen where no
pressure jump across the hinge line is seen
until more quadrature points are used.

FUSELAGE @

Johnson et al. (Ref 3.7) performed as
supersonic unsteady aerodynamic
computation for the Viggen Idealization
(Ref 3.8) using ZONAS51 option in
MSC/NASTRAN. The canard is slightly
above the wing plane by a distance of 0.1
length units. The generalized force Q2
shown is the lift coefficient of the wing
due to a unit rotation of the canard about
its midchord.

(176,76, 2245}

Fig 3.3 Aerodynamic Modeling of F-18 Wing

The lift coefficient is obtained by dividing the generalized force by the dynamic pressure and the
square of the wing span (1.20 units). As shown in Ref 3.6, the wing lift is calculated by
considering two rigid-body modes of motion, the first being the wing alone undergoing unit
plunging, and the second being unit canard rotation. The reduced frequency is based on a
reference semichord of 1.00 unit. The results are shown in Fig 3.5 and almost coincide with the
NLR SPNLRI-CP (Ref 3.9) results up to the high reduced frequency of k= 5.0.
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To verify convergence, two aerodynamic element (“box”) idealizations were considered. In the
first, the canard was divided into 8 equal width strips with 8 equal chordwise divisions, and the
wing was divided into 12 equal width strips and 12 equal chordwise divisions, giving a total of
208 boxes. In the second idealization, the equal divisions were 10 x 10 on the canard and 20 x
20 on the wing for a total of 500 boxes. The two sets of results agreed within plotting accuracy
and are not distinguished in Fig 3.5.

Stark’s Characteristic Box Method (CHB; Ref 3.10) results are also shown in Fig 3.5. It can be
seen that the CHB results agree with the NLR SPNLRI-CP and ZONAS1 results only at low
reduced frequencies (k < 1). At higher reduced frequencies, the CHB results give considerable
discrepancy compared to these of the other two methods.
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Fig 3.4 Effects on Panels on Computed Pressures
for an F-18 Wing with an Oscillating Leading-Edge
Flap at 58.8% span, M =1.1and k=4.0

Fig 3.5 Real and Imaginary Part of the Lift on the
Main Wing Due to Pitch of the Canard, M = 1.054
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In order to demonstrate the capability of
ZONAS1 for supersonic flutter analysis, a 70°
swept delta wing (model 1A) in this series is
selected for comparison with the existing flutter
results. The planform is subdivided into 100 i L A AN B
panels as shown in Fig 3.6. Four modes are — 7 Z Z 7 [ 1
used in the present flutter analysis.

| Fig 3.6 Paneling Scheme for a 70° Delta Wing

A set of flutter points were obtained for seven Mach numbers (M = 1.01, 1.19, 1.30, 1.64, 2.0,
2.25 and 3.0) using ZONAS1. Throughout the supersonic Mach number range considered,
ZONAS1 appears to yield the best correlation with experimental data among all supersonic
methods shown here; these include FAST (Ref 3.11), ACUNN (Ref 3.12), Piston Theory (second
order) (Ref 3.13) and CAP-TSD (Ref 3.14) (Figs 3.7, 3.8). Overall, ZONAS51 predicts slightly
lower values in the flutter frequency ratio @, /@, (@, is the natural frequency of mode 2) than
the obtained experimental data.

1.07
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®2 Coae
oh A
081
o CAP-TSO
© PistonTheary - -;
oA A ZONASIC
A PAST
+ ACUNN
02 =0~ Experiment
Y . ] u.
MD 1 2 3
M
.3 1 2 s
M

Fig 3.7 Computed and Measured Flutter Speeds Fig 3.8 Comparison of Ratios of Flutter Frequency
vs. Mach Number vs. Mach Number

ZONA7 (Ref 3.15) generalizes ZONAS1 for the wing-body configuration. Its lifting surface
method is identical to ZONA51. But its body aerodynamic capability enables ZONA7 to model
realistic aircraft configuration including the external stores. To verify ZONA7 on body-alone
configuration, a 10% thick ogive body performing oscillation in a first bending model is selected
(Fig 3.9). Complete agreement is found between the HPP (Ref 3.16) results and the present
results in this high reduced-frequency case (k= 1.0).
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For the case of wing-body configuration in steady flow, longitudinal loadings (C,d/d,,. ) over a

10% thick body with and without a tapered wing (AR = 4.0 and taper ratio = 0.6) are presented in

Fig 3.10.
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Fig 3.10 Static Loadings About the Fuselage-Wing Junctions
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No interference effect is noted in the first 40% of the body length, as expected. A bump-like
loading along 40-85% body length is observed as a result of the presence of the tapered wing. In
addition, lifting pressure distribution along the wing chord is also plotted at the 20%
semispanwise location. Good agreement is found between the computed and measured results
(Ref 3.17). Thus, the steady aerodynamic option of the ZONA7 method is validated by means of
this present interference example.

For wing-store configuration, an NLR wind-

tunnel test configuration constructed with an —
F-5 wing plus an underwing store is modeled
by 112 body panels representing the missile ~
body, 72 wing panels for the launcher and 24 pjping abow
panels for the four aft fins (Fig 3.11). The 50% root chord
complete configuration is in pitching

oscillation about 50% root chord at a circular gjg 3.11 Paneling Model for the Underwing Store

frequency f = 10 Hz, and at two Mach Configuration: Northrop F-5 Wing Plus Underwing
numbers, M= 1.1 and 1.35. Pylon, Launcher, Missile Body with Four Aft Fins

Figs 3.12-3.14 present the comparisons of the NLR measured data and the present computed
results are presented.

. R): Fe20H
Fig 3.12 presents the unsteady [T e | T

1 i O PYLON(P) » LAUNCHER (L)
normal forces and _pltchmg ACSENT METHOD i bt
moments on the underwing store e Pol + BFT WINGS (AW)

. ~e8-~ Pel+MBoAW O Pl +MB+AW +CANARD FINS
system of two  different 004

combinations: 1) the pylon plus

launcher (P + L), and 2) in S o .,

addition to 1), a missile body & ’

with four aft fins (P + L + MB + 00 Mo

“AW). The in-phase (real) part of [Wm:sv-mmrl

the computed normal forces and kil

pitching moments for both cases /

correlated well with  the 002 00

measured data, while all out-of- g & o e’
phase (imaginary) parts remain § os 1o 14 £ o—o
insignificantly small. 00t Mo -002 Mo

Fig 3.12 Unsteady Normal Force and Pitching Moment for the
Underwing Store Configuration With and Without the Missile Body

Oscillating about 50% Root Chord at M, = 1.1 and 1.35 and Reduced
Frequency k= 0.1
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Fig 3.13 Unsteady Side Force and Yawing Moment Fig 3.14 Unsteady Spanwise Normal Force and
for the Complete Underwing Store Configuration Pitching Moment for the Clean F-5 Wing and the
With and Without the Missile Body and Launcher Underwing Store Configuration at M, = 1.3§ and
Oscillating about 50% Root Chord at M, = 1.1 and Reduced Frequency k= 0.1

1.35 and Reduced Frequency k = 0.1

Fig 3.13 presents the side forces and yawing moments on the underwing store systems in three
different combinations: 1) pylon alone (P); 2) pylon and launcher (P + L); and 3) in addition to
2), a missile body with four aft fins (P + L + MB + AW). Both measured data and computed
results show increases in the in-phase normal forces (positive for outboard direction) with the
addition of the system from 1) to 3), whereas a decreasing trend is observed for the out-of-phase
parts. The unsteady yawing moments on the system are relatively small. The computed results
also show that the added missile with fins to the system contributes most to the in-phase moment
(positive body apex pointing inboard).

In Fig 3.14, the integrated spanwise unsteady normal forces and pitching moments along the F-5
wing under the influence of the complete underwing store system are plotted against those of the
clean-wing case according to the computed results and the test data. It seen that the computed
forces and moments predict the same trend as the measured data showing a finite discontinuity
across the pylon location. The computed results tend to overestimate the in-phase forces and

moments and underestimate the out-of-phase forces and moments in comparison with the
measured data.

However, these discrepancies may be caused by the uncertainties in the measured unsteady data
as mentioned in Ref 3.18. Meanwhile, NLR also provided the measured quasisteady data, which
is supposedly more reliable for the in-phase forces. Better agreement in trend between the
quasisteady data and the computed results is found for this case.
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ZONAG6 (Ref 3.19) is the subsonic counterpart of ZONA7 except that includes the important
body-wake effects for fuselage and stores. For wing-body configuration in steady flow, the static
loading of the same fuselage-wing configuration depicted in Fig 3.10 is now computed by

ZONAG6 at M = 0.6, o. = 4°. Fig 3.15 shows an excellent agreement found between ZONA6
results and the measured data.
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Fig 3.15 Static Loading of NACA Wing-Body Configuration; M = 0.6 and o =4°

Figs 3.16 — 3.19 present a series of computed results by ZONA6 in comparison with NLR
measured and analysis data for an NLR modeled wing-tip-store configuration (Ref 3.20).

Based on the configuration and the paneling
scheme shown in Fig 3.16, the computed
steady pressure coefficients along the tip-
tank at two azimuthal angles, 1) 6 = 292.5°
and 2) 6 = 67.5°, are presented in Fig 3.17. T
The present results appear to be in good WING BOXES =90
agreement with each other and with NLR’s

computed and measured data.

Fig 3.16 NLR Wing-Tip-Tank Configuration Showing
Paneling Scheme

Fig 3.18 presents the unsteady pressures along tip-tank at an azimuthal angle 6 = 202.5°. It is
seen that the present results are in good agreement with the NLR measured data. The present in-
phase C, without wake appears to deteriorate towards the tail of the tip-tank, whereas that with
wake appears to correlate best with the measured data. This is expected, because the flow is
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known to separate at the rear in this case. For the out-of-phase Cp, the NLR computed results
show a discrepancy with the measured data starting from the midbody.

0.50F

n

000 020 040 060 080 100

b) “
Fig 3.17 Steady Pressure Fig 3.18 Unsteady Pressure Fig 3.19 Unsteady Normal Load
Distribution Along the Tip-Tank Distribution Along the Tip- Distribution Along the Tip-Tank
of NLR Wing-Tip-Tank Tank of NLR Wing-Tip-Tank of NLR Wing-Tip-Tank
Configuration; Configuration; Configuration;
M=0.45 and o = 4°: M=0.45, a=0° k= 0.305, M=0.45, a=0° k=0.305
2) 6=292.5°and b)6=67.5° X, =0.15cg, and 0 =202.5° and X, = 0.15 cg,

Fig 3.19 presents the unsteady normal load C, along the tip-tank. It is seen that the present
predicted values of the in-phase and out-of-phase C, are in better agreement with the measured
data than those of NLR, particularly for the cases with the wake model. In addition, the NLR’s
out-of-phase result show considerable departure from the measured data.

It should also be noted that ZONAG6's lifting surface method adopts a higher order paneling
scheme than the Doublet Lattice Method (DLM) (Ref 3.21), in that the later only considers a line
distribution on each aerodynamic box. It is found that the high order paneling scheme is of
importance for the robustness of the unsteady lifting surface methods (Ref 3.22). In order to
demonstrate this, two wing planforms are selected for comparison of the present results and
DLM results. These planforms include a rectangular wing of aspect ratio 20 at A/= 0.0 and a 70°
delta wing at M = 0.8. The main objective in the present cases studied is to display the ease of
utilization of a high-order panel code such as ZONAG as opposed to that of DLM. For all cases
considered (Figs 3.20-3.27), a commonly-practiced paneling scheme, as shown in Fig 3.22, the
spanwise panel cut A, is provided by equal cut along the span whereas the chordwise panel cut
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N, by lines that connects the equally-divided points along the root chord and tip chord. It will be
shown that ZONAG is less sensitive to the paneling scheme than DLM, hence a more robust
code. No attempt is made to select other paneling schemes for further investigation of this issue.
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Fig 3.20 Generalized Aerodynamic Forces CL, (=Q12/S) versus Reduced Frequency k:

AR =20, Rectangular Wing (M = 0.0, x, = 0.5¢);
a) Panel Number = 10 x 10, b) Panel Number = 10 x 40

Rectangular Wing of AR = 20

Fig 3.20 presents the ZONA6 and DLM results in terms of generalized aerodynamic forces
(GAF) versus reduced frequencies X for a rectangular wing of AR = 20.0 pitching about 50%
chord. Two paneling schemes are adopted: Ny x Ny = 10 x 10 (Fig 3.20a) and Nx x Ny = 10 x 40
(Fig 3.20b). It can be seen that for the 10 x 10 case the DLM results depart from the
Theodorsen’s exact theory (Ref 3.23) exponentially for £ = 0.3, while the ZONA6 results
maintains an acceptable range. For the 10 x 40 case, the error of ZONAG results are further
reduced as one would expect. However, large discrepancy still exists in the imaginary part of
C,, between DLM and Theodorsen’s theory. '

According to the MSC/NASTRAN manual (Ref 3.3), the chordwise panel number is linearly
proportional to reduced frequency k. For obtaining a valid result, DLM requires that £ = 0.08 N,
for N, at least equal to or greater than four. This is to say that for Ny = 10 the valid limit for & is
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around 1.0, and for &k = 10, N, has to be over 100. For a rectangular wing, the spanwise panel
number N, can be expressed as:

N, = (S|
Y 204R)

where AR and A4R are the aspect ratio of wing and panel, respectively. If AA4R is bounded by
3.0, Ny should be at least over 400. It is clear that all these tedious numerical restrictions are a
result of the low orderness of DLM. By contrast, ZONA6 removes all these restrictions and can
be applied readily with the present paneling scheme. A further study of these methods in the

effect of the panel number on C; and C, results is shown in Fig 3.21. It is seen that the DLM

result is very sensitive to the spanwise panel cut if N, is below 20 and it converges very slowly to
Theodorsen’s solution. On the other hand, ZONA6 results approach Theodorsen’s solution
asymptotically as the panel number increases.
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Fig 3.21 Effects of Panel Numbers on GAF C; and Cy :
AR =20; Rectangular Wing (M = 0.0, &k = 10, x, = 0.5¢)

Slender Delta Wings

a) 70° Flat Delta Wing b) Generic HSCT Wing

Fig 3.22 Typical Paneling Scheme
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The slender delta wing family belongs to another planform category that, with the present
paneling scheme (see Fig 3.22), DLM would have difficulty in producing satisfactory results.
For a tapered or delta wing planform, Ny can be generalized to:

)
2N, ¢

where A4R, is the panel aspect ratio of the i strip and ¢; is the corresponding local chord length.
Hence, the ratio of A4R, on two strips is inversely proportional to their local chord lengths. For

a 70° delta wing with a 10 x 10 panel cut (Fig 3.22), the aspect ratio of the outboard strip at the
tip section, would amount to 17 times that of an inboard strip at the second station. This
condition would probably be too stringent a condition for DLM to be applicable.

The effect of swept angle on the steady C; and C,, for a slender wing is presented in Fig 3.23

at M = 0.8. With a 10 x 10 panel cut for a slender delta wing, it seen that ZONAG6 result
correctly approaches Miles” asymptotic slender-wing limit (Ref 3.24), whereas DLM would not
do so.
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Fig 3.23 Effects of Sweptback Angle on C; and Cy_ (M = 0.8,k = 0.0, x, = 0.5c)

70°Delta Wing

A thorough numerical study has been conducted on a 70° delta wing in pitching about its
midchord at M = 0.8. The unsteady pressures, forces and moments are computed at various
spanwise locations based on DLM and ZONA6. Figs 3.24, 3.25 and 3.26 present the pressure
distribution on two spanwise stations at 15% half span (station 2) and 95% half span (station 10)
at reduced frequencies k = 0.0, 0.5 and 10.0, respectively. Two paneling schemes are used, one
with 10 x 10 cut, the other 40 x 10 cut. Several observations on the computed pressures in these
figures are in order:
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e All ZONAG results are valid showing consistent improvement in pressure details as
the panel number increases.

e Almost all DLM results are invalid except at station 2 with a 10 x 10 cut,
corresponding to a panel aspect ratio of 0.43. It should be noted that the panel aspect
ratio for all other cases are greater than unity.

e The DLM pressures tend to converge to the ZONAG6 pressures toward the aft wing
portions at station 2. The reason for this is not clear. Perhaps the skewness of the
upstream panels might also attribute to the solution breakdown.

An obvious remedy to use DLM is to adopt a different paneling scheme from the present one.
This then would amount to establishing another set of numerical restrictions. But all these could
be avoided if one uses ZONA®G instead.
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Fig 3.24 In-Phase Pressures on Two Spanwise Stations:
70° Delta Wing (M = 0.8, k = 0.0, x, = 0.5¢)
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Fig 3.25 Out-of Phase Pressures on Two Spanwise Stations:
70° Delta Wing (M = 0.8, k= 0.5, x, = 0.5¢)
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Lastly, Fig 3.27 presents the effect of the panel number on the generalized acrodynamic forces
C,, and Cy_ . Itis seen that ZONAG results consistently approach to a converged solution as

the chordwise panel number N increases, whereas the results of DLM fail to do so.
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Fig 3.27 Effects of Panel Numbers on C; and Cy, :
70° Flat Delta Wing (M = 0.8, k = 10.0, x, = 0.5¢)
3.2  Integral Equations of the Linearized Small Disturbance Equation
ZONAG6 and ZONA7 solve the linearized small disturbance equation that reads:
(1-M2) 0, +0, +0, -2M*0, - M'®, =0 3.1)
where:
M, is the freestream Mach number
and:
D =g + 4 is the total velocity potential. 3.2)

Eq 3.2 shows that the total potential @ consists of two parts; the steady potential ¢, as well

as the unsteady potential ¢, where &, is of the order of wing thickness and ¢, is of the order of

oscillatory amplitude due to the structural modes. For stability analysis the amplitude of the
structural oscillation is assumed to be smaller than wing thickness or at all times, i.e.

¢ << ¢4, (3.3)
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Substituting Eq 3.2 into Eq 3.1 and collecting the like-order terms yield the equations for ¢, and
9,:

(1 - sz) boe + Popy + Pozz = 0 | B34

(1-M2) g + 6y + 6 - My - 2M7 4, =0 (3.5)

Eqs 3.4 and 3.5 are the steady and unsteady linearized small disturbance equations respectively.
The steady and unsteady potentials are decoupled in these equations because Eq 3.1 is a linear
equation. Solving the steady and unsteady flows requires Eqs 3.4 and 3.5 to be subjected to their
respective steady and unsteady boundary conditions. The solution techniques for solving the
time-domain unsteady linearized small disturbance equation (Eq 3.5) have been presented by
Morino and Tseng (Ref 3.25) for subsonic flow and Freedman and Tseng (Ref 3.26) for
supersonic flow by a time domain Green’s function approach. However, such a time domain
Green’s function approach is complex and costly in computation. Also, insufficient unsteady
results were presented in their work for proper assessment of the applicability to aeroelastic
analysis.

Consider an aircraft of interest performs a simple harmonic motion, the unsteady potential ¢,
generated can be expressed in a reduced form:

¢ = ¢ (3.6)
where:

@ is oscillation frequency

¢ is the reduced frequency-domain potential.
Let:

X =LBx, y =1Ly, 2 = Lz (3.7)
where:

L is the reference length (3.8)
and:

B = Il-szl (3.9)

Introducing the so-called modified potential Z such that:

6 =9 (3.10)

where:
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™

and:
o L

-
S

v

is the so-called compressible reduced frequency

is the reduced frequency.

One can transform Eq 3.5 into:

- - - 2
¢x’x’ +ﬂ¢ylyl +ﬂ¢zlzl +Z ¢ = O

where:
u =1

u o= -1

for M, <1

for M, > 1

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Applying Green’s theorem to Eq 3.13, an integral solution can be obtained in terms of the
unsteady source and doublet singularity distributions o and A¢ over the surface S of the

configuration of interest. Transforming this integral solution back to an expression for ¢, one

obtains:;

# (50 ¥es 20) = = 2= [[o(x 3 ) F Kas
s

where:

X5 Yoo Zo
x, Y, Z
E =4
E =2
o

Ag

0 —
—_— =N
on

K

0

1
4o Ap(x, y, z) et — KdS
[ a¢(x 5, 2) -

Ex S+W

are the field points (to be influenced)

are the sending points (from the sources and doublets)
for M, <1

for M, > 1

is the unsteady source singularity distribution

is the unsteady doublet singularity distribution

nn  is the out-normal vector

is the Kernel function
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K = R ~ for M <1 (Subsonic Kernel)

(3.17)
K = SP-S(—;—@ for M > 1  (Supersonic Kemel)
R=y& +pun +ud’ | (3.18)

and:

= |27 % _{Y-Y _(z-2
é‘—(ﬂL], ﬂ—(L), 4 (L} (3.19)

The integral associated with the unsteady source singularity is defined over the surface of the
configuration S, where S can be expressed as:

S(x,y,2,t) =0 (3.20)

whereas the unsteady doublet singularity over the configuration and the wake surfaces S+ W.
The surface of a typical wing section and its associated wake surface are shown in Fig 3.28.

-

7
Stx,y,zt =0
E (%29 Wake ©
L na———— "

Fig 3.28 Surface definition of configuration and wake

The vector 7 shown in Fig 3.28 represents the out-normed vector of S and can be expressed
as:

n o= e =ni+n,j+nk (3.21)

where 7y, 1y and n, are the components of 7 along x, y and z directions, respectively.

For solving the integral equation in Eq 3.16, ZONA6 and ZONA7 adopt the so-called panel
method whose formulation will be discussed in a later section.
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3.3  Unsteady Boundary Condition and Pressure Coefficients

The inviscid fluid flow boundary condition requires the flow to be tangential only to a moving
body at all times, i.e.:

= +V.V§ =0 at S(xyz0H)=0 (3.22)

where S is the body surface defined in a wind-fixed coordinate system and V is the flow
velocity.

Eq 3.22 is the generic equation for all tangency conditions desired for elastic wing planforms of
unsteady motions. For elastic bodies performing unsteady motion, however, Eq 3.22 is found to
be unsuitable. Attempts in the past (Ref 3.20) to derive the body tangency condition using Eq
3.22 in fact failed to produce useful results. By useful results, it is meant to arrive a set of
second order terms to account for the body thickness effect in addition to the slender body
boundary condition. Benneker, Roos and Zwaan (Ref 3.20) has derived such a wind-fixed
boundary condition. But their boundary condition contains several second-order singular terms,
all associated with the second derivative of the mean-flow potential. It appears that no clear
resolution was stated in Ref 3.20 as to the remedy of the singular terms.

In their extensive analysis, Garcia-Fogeda and Liu (Ref 3.27) suggested an approach to adopt the

body-fixed coordinate system that could totally circumvent the singularity problem. The flow
tangency condition under this system reads:

(7-7,)-vs =0 a S=0 (3.232)
where ¥, is the velocity due to body surface motion. This approach results in all regular
second-order terms. The usefulness of the boundary condition and the resulting Cp expression
(will be shown later), have been ascertained and adopted by much of ZONA'’s subsequent works

in unsteady subsonic and supersonic aerodynamics for bodies and wing-body configurations
(Refs 3.28, 3.29).

Garcia-Fogeda and Liu started from Eq 3.23a and obtained the following equation for an
arbitrary elastic body in harmonic motion with given modes, i.e.:

Vg -7 = F, (3.23b)

where V@ = (u,v,w) is the unsteady perturbation velocity vector due to the harmonic motion,
and:

Fy,=n (b u,+ikh) + n(h +ikh)+n (b +ikh) (3.24)
is the so-called “downwash function” on arbitrary bodies,
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where:
hy, hy and b, are the components of the modes with respect to the reference
length L along x, y and z directions, respectively

u, is the steady perturbation velocity components in the x direction

( )' is the diffetential operator with respect to (%)

For a flat plate type lifting surface, i.e. ny = 0, Eq 3.24 is reduced to the familiar boundary
condition:

Vo -7i =F, at S=0 (3.25)

where:
Fy =hy +ikhy (3.26)
is the so-called “downwash function™ on flat-plate type of lifting surface,

and:

hy=nh, +nh, (3.27)
Comparing Fw to Fp, one can see that indeed Eq 3.25 is a special case of Eq 3.23. Also, while
the unsteady boundary condition of lifting surfaces is totally uncoupled from the steady flow
influence, the unsteady boundary condition of arbitrary body includes the steady (mean) flow

component %, Computing the steady flow components requires the solution of the steady small
disturbance equation (Eq 3.4) with the well-known steady boundary condition:

Vg, - Ai=-(V-7) | (3.28)

where ¥V is the free-stream velocity vector.

Based on the work of Garcia-Fogeda and Liu (Ref 3.27), the unsteady pressure coefficient on the
body expressed in the body-fixed coordinate reads:

C,=-2C, ((1+uo)(u+hx u +h, U) VY W W
, , (3.29)
v B w, Ry v+ Tk + B, By, hzwo))
where:

1
C, = [1 - -}:2'—1 M} (21,1‘J +ul+vi 4wl )]H (3.30)
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u,, Vo and w, are the steady perturbation velocity components

¢.,u,vand w are the unsteady perturbation potential and velocity components
¥ s the specific heat ratio

For a flat-plate type lifting surface at zero angle of attack, the steady perturbation velocity
components are zeros, i.e. 4, = Vo, = w, = 0. Eq 3.29 is the reduced to the well-known
pressure coefficient expression of lifting surfaces:

C,=-2(u+ikg) (3.31)

However, the conventional pressure coefficient of lifting surface is an expression in terms of the
difference of pressure between its lower and upper surfaces. Expressing Eq 3.31 in terms of
pressure difference on the mean surface gives:

AC, = -2 (Au + ikAg) = -2 (%A;ﬁ + ikA¢) (3.32)

where A() denotes the difference between the lower and upper surfaces of (*).

It should be remarked that the unsteady pressure C, for arbitrary bodies Eq 3.29 involves
coupling terms with the perturbation velocities of the steady mean flow, which brings in the
thickness effects. By contrast, the unsteady pressure AC, for lifting surface (Eq 3.32) is

uncoupled from the steady mean flow terms.
3.4  Paneling Scheme for Aircraft Configurations

The surface of an aircraft configuration is broadly divided into two categories: the body-like
components and wing-like components (see Fig 3.29). The body-like components (BLC)
consists of fuselage, external stores, tiptanks, etc. Each BLC is divided into NG number of
segments by x = constant cuts. Each segments consists of NR x NO number of surface boxes, all
of which are flat panel elements. That is, each segment is subdivided into NR rings by NR+1
cross sections, obtained by cutting the segment with x = constant planes. Next, a circumferential
(radial) cut is applied to this same segment yielding NO boxes on each ring. There are NO+1
circumferential points to define the NQ boxes. The order of these NO+1 points begins from the
bottom meridian counting in the clockwise direction looking downstream. Let NB represent the
number of boxes of the total body-like components for an aircraft, and let NBODY denote the
number of body-like components. Thus, NB can be expressed as:

NBODY NG,

NB = > > (NR,x NQ,) (3.33)

i=1 J=1
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Body Segments Wing Box
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Wing Components

Fig 3.29 Aircraft Components Showing Body and Wing Segment/Box

The wing-like components (WLC) consists of thin surfaces whose spanwise cross section can be
represented by airfoil-like thickness distribution such as wings, canard, fins, pylons, launchers,
etc. A wing component is defined by a lifting surface enclosed by a straight leading, trailing and
two side edges. Each wing component is then divided into NS streamwise strips by NS+1 lines
parallel to the x-axis called “spanwise divisions”, and each strip is subdivided into NC chordwise
trapezoidal boxes by NC+1 spanwise lines called “chordwise divisions™. Let NW be the number
of boxes of the total WLC of an aircraft, and let NWING denote the number of wing segments.
Then NW can be expressed as:

NWING

NW = Y NS,xNC, (3.34)
i=1

It should be noted that for unsteady linear aerodynamics the thickness effects of the thin lifting
surfaces are of first order. This is to say that for the wing-like components there is no
requirement of modeling the thickness distribution on the lifting surfaces. Thus, all wing-like
components are assumed to be flat plate in the present paneling scheme. Since source singularity
is usually used to simulate the thickness effects whereas doublet singularity to generate lift, the
flat-plate type of lifting surfaces require no source singularity and only the doublet singularity is
distributed on the mean-plate of the wing-like components and their associated wake surfaces.
On the other hand, the present panel scheme for bodies takes up a simplified formulation in
which only the source singularity is distributed on the body-like components. This will greatly
simplify the effort for deriving the solutions of the source and doublet integrals. With this
paneling scheme, Eq 3.16 becomes:
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P (X3 Yos2,) = Sy (X9 Vor2,) + G5 (X4 Yos2,) (3.35)

where:
_ 1 1AM, & 0
by = —— mi jme (% y,z) e 5. Kds (3.36)
is the potential influence due to the wing-like components
and:

Py = - L o(x, y, z) €4 K dS (3.37)
? Ex
body

is the potential due to the body-like components

The derivations of g, and ¢; solutionare discussed on the next section.

3.5 Discretization of the Source and Doublet Integrals

Doublet singularity distribution on the wing-like components and their associated wake surfaces
implies that the panel modeling is required not only for the wing-like components but also for the
wake surfaces. This will greatly increase the modeling effort due to the large domain of the
wake surface that starts from the wing trailing edge and extends to downstream infinity. To
circumvent this problem, one introduces the acceleration potential y which is directly

proportional to a perturbation pressure field related to the potential ¢ by:
v = 244 , ikAg (3.38)
Ox

Comparing Eq 3.38 with Eq 3.32 results: .

AC, = -2y = -2(3A¢ + ikA¢) (3.39)
ox

Eq 3.39 establishes a transformation from the unsteady doublet singularity A¢ to the pressure
coefficient difference AC,. Applying this transformation to Eq 3.36 gives:

bu (%43 Y012, ) = 5—5—; Jﬂj AC, (x,,2) €28 K (&,1,¢)dS (3.40)
where:
k
—_— _ £ i—Er aK
K = - L e’ —-dr (3.41)
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X =-0o : for M< 1

X =4+ for M > 1

Since the wake surface cannot sustain force, i.e. AC, = 0 on wake surface, the integral equation

of ¢y, (Eq 3.40) is applied on the mean-plane of the wing components only. The integral on
wake surface vanishes automatically. Therefore, with the acceleration potential transformation,
the integral equation of @, is expressed directly in terms of AC, and requires no panel
modeling of the wake surface.

Based on the paneling scheme depicted in Fig 3.29, the integrals of Egs 3.37 and 3.40 can be
discretized into many elementary Kernel integrals associated with each aerodynamic box. On
each aerodynamic box, a constant singularity distributed is assumed. For the /* control point
located either on the wing or body box, its perturbation potential ¢ can be approximated by:

NW

NB
¢(xo’yo’zo) = ; ¢BH o—j + ngl ¢WU AC’p_, (3'42)
(i=1,2,..,NB+NW )
where:
1 CiAM, &
b, = - — [f e K dg dn (3.43)
Ex 88 87,
is the elementary source Kemnel integral representing the potential influence
coefficient at the i control point due to the 7™ body box
| ﬁ kB¢ T
by = —— e K dn d& (3.44)
v 2Erx M!'LU

is the elementary pressure Kernel integral representing the potential influence
coefficient at the i control point due the fh wing box

o;  is the unknown source strength of the 7% body box

AC, is the unknown pressure jump on the 7™ wing box

‘A&, and A, represent the boundary of the /™ box relative to the i® control point
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Likewise, the unsteady perturbation velocities #;, v;, w;, can be expressed as:

NB Nw

(4yv5w;) = z (uB”’vB”’wBu)aj + z (uw,I!waswwu)ACpJ'

Jj=1 ' j=1

(i=1,2,.., NB+NW)

where:
1 -
(ttg, 0, ¥p,) = ~—— || ¥ {e* ¢ k Jd& dn
En 88,87,
and:
(s, sV, W, ) = B H \Y {e”‘“ —f}dr] d¢
2E~x an, 82,

are the velocity influence coefficients at the i® control point due to the I

wing box

(3.45)

(3.46)

(3.47)

The potential and velocity influence coefficients of the body box and the wing box are obtained
by solving the elementary kernel integrals (Eq 3.44) and the elementary pressure kernel integrals
(Eq 3.45) respectively. The detailed derivations of the solutions of these integrals can be found

in Refs 3.2, 3.15 and 3.19.

3.6 Matrix Equations for the Solution of Unsteady Pressure

Applying Eqs 3.42 and 3.43 at NB+NW number of control points, one can construct the influence

coefficient matrices PIC, UIC, VIC and WIC as:

(o)
[PIC] {AC }

(o)
w2

(o}
{v} = IVIC] { AC }

{¢}

{u}

It

o
{w} = VIC] { AC }

(3.48)

where {¢}, {u}, {v} and {w} are the perturbation potential and velocities of all control points,

and:
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and:

[ @s)se (Pw)vn |

PIC
PICT =1 Gdow B damw |

is the potential influence coefficient matrix,

[ 7]
[UIC] = (p)ee  (Uw)ws ’ VIC] = [

L @s)ew  (Uw)ww _ O)ew Oy dww

sz (Vw)we :|

Wpdee  (Ww)ws ]

e)ew  (Ww)ww

WIC] = [

are the velocity influence coefficient matrices, (3.49)

( s is the influence at the body control points due to the body boxes
()ew  isthe influence at the wing control points due to the body boxes
( ws is the influence at the body control points due to the wing boxes
( ww is the influence at the wing control points due to the wing boxes

Applying the boundary conditions of the wing boxes (Eq 3.27) and the body boxes (Eq 3.24)

gives:

where:

c Fy
[NIC] {AC } = {F } (3.49a)

[NIC] = & - 7
= [1,)IUIC] + [n,IVIC] + [n,]IWIC]

is an (NB+NW) by (NB+NW) square matrix and is named
Normal Velocity Influence Coefficient Matrix

u=(uv,w)

is unsteady velocities on wing-body

Inverting [NIC] gives the singularity strengths of the body and the wing boxes, i.e.:

ey {5 3.50
ACP =1 : {Fw} ' (-39

For a given set of downwash functions Fw and Fg, unknown strengths ¢’s and AC,’s can be

solved from Eq 3.50. Once o’s and AC,’s are known, the perturbation potential and velocities
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{#}, {u}, {v} and {w} can be evaluated according to Eq 3.48. Consequently, the unsteady
pressure coefficient on body boxes can be calculated according to Eq 3.29.

Notice that the boundary condition and pressure coefficient of the body boxes involve the steady
perturbation velocities u,, v, and w,. To evaluate them form Eq 3.50, it is required to solve the
steady aerodynamics of the body. Now, the unsteady Kernel functions of Eq 3.17 can be readily
reduced to its counterpart in the zero frequency limit. Thus, the influence coefficient matrices of
the steady aerodynamics can adopt directly from these of the unsteady aerodynamics by setting
k=0. The steady perturbation velocities can then be obtained by applying the steady boundary
condition presented in Eq 3.28.

Fig 3.30 presents the solution procedure in obtaining the unsteady pressure coefficients on wing
and body boxes. This procedure is proceeded as follows:

- Solve for steady perturbation velocities %o, v, and w.

- Construct Influence Coefficient matrices [UIC], [VIC], [WIC], [PIC] and [NIC] according
to Eq 3.49. Note that this step takes up most of the computation time in
ZONA6/ZONA7. However, being independent of the mode shape, they can be obtained
and saved once and for all for a given M and £ pair.

- Construct Downwash functions FB‘ and Fw‘ of Eqs 3.24 and 3.26; perform matrix
decomposition on [NIC] and solve for cand AC, from Eq 3.50.

- Compute unsteady velocities %, v and w and unsteady potential ¢ according to Eq 3.43.

- Compute unsteady pressure C,, on body according to Eq 3.29.
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3.7

The flow chart shown in Fig 3.30 gives a step-by-step computational procedure for unsteady
pressure calculation, but it does not provide the A/C matrix to directly relate the given structural
mode shape to the unsteady aerodynamic forces. To construct an 4/C matrix for the wing-like
components is rather straightforward. The force acting normal to the wing boxes can be obtained

Linearized Equation for ®
(-M)o + @, + D, - 50, - 2AZ° @, =0
=g, +pe
v v \ 2 v_
Steady Body Steady Wing Unsteady Body Unsteady Wing
Kemel Kernel Kernel Kernel
Calculation Calculation Calculation Calculation
v v
Steady Boundary Condition Unsteady Influence
and Influence Coefficient Matrix Assembling
Matrix (Real Matrix)
Matrix Decomposition and Unsteady Boundary
Solution of Steady — Condition Calculation 4

Velocity Components

v

Matrix Decomposition and
Solution of Unsteady Potential
and Velocity Components

Structural
Modes

v

Fig 3.30 Flow Chart of Computation and Calculation Procedure
for Unsteady Pressures

Construction of Aerodynamic Influence Coefficient (41C) Matrix

P

Unsteady C,

Calculation <

by multiplying the area of the wing boxes to the unsteady pressure on wing boxes. This gives:

L) = 0. 10 A JvCT {2 )
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where:
NIC NIC
[MC]=[[ Joo | ]wa]
[NIClgw [NIClyw
is the normal velocity influence coefficient matrix

q. isthe dynamic pressure

A, isadiagonal matrix containing the area of the wing boxes

L. 1isthe normal force vector on wing boxes

wing

The normal forces on the body-like components are more complicated that that of the wing-like
components. Rewriting Eq 3.29 in matrix form and multiplying the body box area give:

{Lbody} 9. [As] {Cp}

9= [[Ba] [Bua]] (VICT {:} + ()

w

(3.52)

where:
A  isadiagonal matrix containing the area of the body boxes

L, isthe normal force vector on the body boxes

[Bes] Busll = [A5] [-2C,1 [ [1+2,] [[UICs] [UICys1]
+ ] [VICo] VICys1]
+ [w,] [[7ICs] [WICys]]
+ [ik] [[PICs] [PICys]]]

(3.53)

where d contains the terms in Eq 3.29 associated with the given mode shapes,

) = 24, C [ (1 +5) (b ug+hy u) + by W, + by v, (3.54)
+ik(hou, + hyv,+ hw,)]

Combining Eqgs 3.51 and 3.54 gives:

Ly | _ L [ Fy d
i) o i) )

where:
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[Bss] By
[ﬁl = I:[ 0] [Aw]] (3.56)

Eq 3.55 establishes a relationship between the boundary condition of box and wing components
(Egs 3.24 and 3.25) to the normal forces on the box and wing boxes. However, it is desirable to
express Eq 3.55 in the standard format of A/C matrix equation as:

{L,} = q. [4IC] {h} (3.57)

where h and L, represents respectively expression for the mode shapes and force vectors on the
body and wing boxes.

To derive the Eq 3.57 from Eq 3.55, it is required to introduce the J-sef and X-set degrees of
freedom of the aerodynamic boxes. This will be discussed next.

3.8 J-Set and K-Set Aerodynamic Degrees of Freedom for AIC Matrix

The J-set acrodynamic degrees of freedom (d.o.f) is simply the number of aerodynamic boxes.
For instance, the size of vectors and matrices in Eq 3.55 are all in the order of J-setd.of,ie.:

J-setd.of = NB+NW (3.58)

By examining the boundary conditions of the body and wing boxes, it can be realized that mode
shapes s in Eq 3.57 contains six components on each aerodynamic box, namely
h.,h,, h K. h.and k. Thisimplies that the size of 4 is in the order of 6 x J-set. Defining K-

x> Cy?>» 22" x2> "y

set = 6 x J-set as:
K-set = 6 x J-set = 6 x (NB+NW) | (3.59)

gives the mode shépes h as:

r h; W
hy
h, |

Bl =193 W bos (3.60)
hy
Lh% Ji

\

where i denotes the i® J-set d.o.f,
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and (-)’ represents the derivative of (-) with respect to (%)

Rewriting the vectors {F;} and {d} in Eq 3.55 in matrix forms, one can redefine Eq 3.55 as:

{IL:"’} = q. [Bloveer [F] + B my G61)

where F and D are the K-set by J-set complex matrices containing the steady velocity
components #,, v, and w, and the normal vector components ny, ny and 7, as well as the reduced
frequency £.

In general, the force at each grid point of the structural finite element method has six
components; forces and moments along the x, y and z directions. In order to be compatible with
the structural finite element method, it is required to convert the normal force vector in Eq 3.61

to the three force components (F,,F,,F,) and the three moment components (M,,M,,M,)
along the x, y and z directions. This can be done by:

1 . _ -
'F; N o‘
nx
IP"} n, .
F) =301 = ssu(t)z» P {L"‘j“Y} (3.62)
X wing
My 0
Mz xoai
\ . i i 0 ]

Combining Eqgs 3.61 and 3.62 gives:
{L,} = g, [4IC] {h} (3.63)

Finally, we have derived a K-set by K-set square 4IC matrix that directly relates the structural
mode shapes to the aerodynamic forces. It should be noted that the structural mode shape {h} in
Eq 3.62 is defined at the aerodynamic boxes. Transferring the structural mode shapes from the
structural finite element grid points to the aerodynamic boxes requires the generation of a spline
matrix. This will be discussed in Section 6.

3.9 Body Wake Effect
The wake generated by flow separation at the tail section or behind the base of a body-like

component has considerable influence to the wing-body or body-alone aerodynamics. ZAERO
provides a non-iterative approach for the body wake modeling. Fig 3.31 presents the
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comparisons of the ZONA6 results with and without the wake modeling with the experimental
pressure distributions along the blunt-base body in incompressible flow.

0.25 %
0.00
G, 8
-0.25 -0~ Present (with wake)
—A—Present (no wake)

E @ Expetiment (Ref. 60)
]

-0.50

0.0 0.2 0.4 0.8 0.8 1.0
X

Fig 3.31 Comparison of Surface Pressure Distribution for a Blunt Body (Lp/d=5)at a=0° M=
0 and Base Pressure C, =-0.169

It is seen that the present (no wake) result begins to deviate from the measured data at a forebody
portion of 0.3 L, where Lg is the body length. By contrast, the present (with wake) result shows
remarkably close agreement with measured data. This comparison clearly demonstrates the
importance of the body wake modeling for accurate acrodynamic prediction.

This non-iterative body wake modeling requires a given base pressure coefficient C, a priori.
Therefore, the pressure of the adjacent boxes to the body base is givenby C, = C . Imbedded

singularities are placed in the assigned proximity of the body base regime to simulate the exterior
wake flow. For steady flow the imbedded singularity is a source, whereas for unsteady flow it is
a doublet. Next, the constant pressure condition is imposed at the body base. This boundary
condition can be expressed as:

C,=C,. ~and C,=0 atS(x=Lsb2)=0 (3.64)

where C, and C, are the steady and unsteady pressure, respectively.
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The combination of this constant pressure condition and the steady and unsteady boundary
conditions yields a compact expression in terms of the velocities, the mode shape and its
derivative, i.e.:

ad=b (3.65)

where a and b are both scalar operators.

-

a="V -V + ik
b =L .54 ike-¥
dx
¢ is a function of the mode shape

¢, and ¢ are the steady and unsteady potential due to the imbedded singularity,
respectively.

The location of the imbedded source and the imbedded doublet are placed along the extended
body axisat x = Ly + g, and x = Ly + q,, respectively, in the region near the base. The

values of g and g4 are, in general, related to the wake length which is yet to be solved as part
of the solution, ordinarily, to be solved through an iteration procedure. However, our experience
showed that empirical guidelines can be set up in which g, can be confined to a width of 0.2 ~
04 Lg and g4 of 0.05~0.15 Lg for any circular blunt base (Lp being the body length). By
numerical experiment, it is found that the converged solutions are rather insensitive to the precise
location ¢ and g4 as long as they are placed within the width given. Fig 3.32 shows the side
views of the computed base-flow of a blunt body, according to the present no-wake and the
present with-wake model. The direction and the length of the arrows indicate the flow direction
and the velocity magnitude, respectively. As expected, the no-wake flowfield velocities appear
to be nearly uniform showing their immediate return to the freestream condition. It can be seen
that the present wake model appears to closely simulate the wake profile. The dashed line is
indeed the dividing streamline which defines the wake closure, or the computed wake shape. It
is clearly shown that the stagnation point at the end of the wake is automatically captured by the
present calculation. The computed wake flow is only physically meaningful in the outer wake
flow region, whereas, the computed flow inside the wake is of no physical significance.
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Fig 3.32 Computer Wake Shape for a Blunt Body at M =0 and o = 0°;
a Meridian-Plane View

With the boundary condition expressed in Eq 3.65 for body wake effects, the unknown strength
of the source singularity ¢ on body boxes, AC, on wing boxes, and the imbedded wake

singularity p.,,. can be solved by the following NI/C matrix equation:

[NIClgs [NIClgw  [NIClp.uaxe o Fy
[NIClys [NIClyw [MClymae |4 AC, b = { Fy (3.66)
(a¢) wake-B (a ¢) wake-W (a ¢) wake-wake Hoaxe b ¢o

where:
[NIClg. e @0d [NICly . Tepresent the NIC induced on the body and wing boxes by
the wake singularity.

(@8) varen> (@) sarew 20d (AB) pareware aT€ the constant pressure condition imposed on
the body boxes, wing boxes and the wake singularity, respectively.

Once the unknowns o, AC, and x,,, are solved from Eq 3.66, the unsteady potential ¢ and
velocities », v and w can be obtained from Eq 3.48.

Fig 3.33 presents the unsteady pressures along the tip-tank of the NLR wing-tip-tank-pylon-store
configuration (Fig 3.34) at an azimuthal angle 6=202.5°. The body wake effects on the wing-
body configuration can be clearly seen in the ZONAG results using the with- and without-wake
models.
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Fig 3.33 Unsteady Pressure Distribution Along the Tip-Tank of NLR Wing-Tip-Tank
Configuration; M = 0.45, a = 0°, k = 0.305, X = 0.15 cg, and 0 =202.5°

AERODYNAMIC MODELING
WING BOXES = 90
PYLON BOXES = 24
TANK PANELS = 264
STORE PANELS = 216

Fig 3.34 NLR Wing-Tip-Tank-Pylon-Store Configuration Showing Paneling Scheme
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It is seen that the present no-wake in-
phase C, appears to deteriorate towards
the tail of the tip-tank, whereas, that with Prosent (with wake)
wake appears to correlate best with the R A :‘L'RS'{‘.‘.&""M"‘“"'-)
NLR measurements. This is expected,

because the flow is known to separate at
the rear in this case, according to Ref
3.20. For the out-of-phase C,, the NLR
computed results (Ref 3.20) show a
discrepancy with the measurement
starting from the mid body.

The computed steady  pressure
distribution along the store at three
azimuthal angles, namely,
6 = 90, 180 and 270°, are presented in

Fig 3.35. The solution with wake is seen
to have better agreement with the
measured data that without a wake. This
leads one to believe that the flow might
have separated at the body tail in this
experiment, although no such
information was supplied in Ref 3.20.

Fig 3.36 presents the unsteady pressure
distributions along the store at two
azimuthal angles: 1) 6=157.5° and 2)
©=292.5°. From the present computed
results, it is seen that adding the wing-tip-
tank-pylon has altered the unsteady
pressure distributions on the store
substantially. In all cases, the present
results with or without wake are in good
agreement with the measured data. In
particular, the solution with wake seems
to show better agreement that the no-
wake solution for the in-phase C,, and  Fig3.35 Steady Pressure Distribution Along the Store of
there the solution also shows a trailing- NLR Wing-Tip-Tank-Pylon-Store Configuration;

- i : M=0.45 and o. = 0°;
?igeeze;lgczd;f)to pylon-store interaction 2)6 =90°, b)0 = 180° and )6 = 270°

0.20 1 » 1 A 1 1 1 A 4 L

c)

On the other hand, NLR’s computed results in the out-of-phase Cj, indicates a solution departure
from the measured data starting from the mid body section, and further deteriorates towards the
body tail. By contrast, it is seen that both present solutions results in much better agreement with
the measured data, especially near the body tail.
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Fig 3.36 Unsteady Pressure Distribution Along the Tip-Tank of NLR Wing-Tip-Tank
Configuration at a) 6 =157.5° and b) 6 = 292.5°%;

M =045, a=0°k=0.305 and X = 0.15 cg,

3.10 Technique of Minimizing Spurious Waves for Supersonic Body Boxes

High order panel methods usually adopt the quadratic singularity distribution on the body boxes
(e.g. PANAIR, Ref 3.30). By comparison, the constant source singularity distribution on the
ZONAG6/7 body boxes should be considered as a low order panel approach for body unsteady
aerodynamics. For steady supersonic flow over a body, it is found that these constant source
singularities on body boxes could generate the nonphysical internal Mach waves or “spurious”
Mach waves inside the body-like components. These spurious Mach waves tend to accumulate
as they propagate downstream within a closed body. As a result, this accumulation of waves
often destabilize the external flow solutions and hence generate large error in the solution over
the aft part of a closed body. This problem can be clearly seen in Fig 3.37 for a supersonic flow
over a cone-cylinder-cone body. In contrast to the exact solution of Karman-Moore (Ref 3.31),
the uncorrected ZONA7 solution (without wave minimization) deteriorates to the extent that the
solution at the aft-cone becomes totally unacceptable.

To examine how the spurious waves are generated in supersonic flow, first consider a point P
located on the x-z plane shown in Fig 3.38.
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Fig 3.37 Cone-Cylinder-Cone at M =2.0 and o = 0° Using ZONA?7 without Wave Minimization
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Fig 3.38 Opposite Points from the Panel Having the Same Xjower
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source singularity is distributed on the box) at M = V2 reads:

The steady normal perturbation velocity at P, , from the body box (assuming a unit strength

0f, _ 0 [ram (Vs 1
27 2 - oz, mjym (52_7]2_42 d
5 Yesper (3.67)
Oz, T & -¢ Viows

where:
(E=x,-x, n=y-y ad (=z-z

and Xypper, Xiowers Yupper @Nd Viower denote the boundary of the body box.

Eq 3.67 is the steady supersonic source integral of the body box obtained by setting k=0 and

=1 in Eq 3.37. If the body box has a large width so that yupper and yiower are located forward
outside of the forward Mach cone emitted from P, the integration limits of Eq 3.67 is the
intersection of the forward Mach cone R = 0 and the panel z=0, i.e.:

y = ?,/ (x,-x) - z2 at a particular x (3.68)

Therefore, the integrand of Eq 3.67 has the value of:

a2 - 2 xR - | (3.69)

The upper limit of the x integral is at the panel’s leading edge, i.e. x,,,, =0. However, based on
Eq 3.68 for y = 0, one can conclude that x,,,. =x, -|z,|. This proves that for two points located
opposite of the panel with the same x location, they have the same value of x, .. .

Therefore, Eq 3.68 is resulted as:

o¢, 0
2 ° = . - -
/4 azo aZO [‘xupper 'xlower] ( 71') (370)
= -Sign (Zo)ﬂ'

Eq 3.70 shows that for a point P located above the box (point P; in Fig 3.38), it receives a
o¢

constant perturbation velocity a—° = - -;— whereas a point P located below the box (point P, in

4
o
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o4,

Fig 3.38), it receives = -1— It also proves that constant source panel generates a jump of

o9,

oz

Zo

across the box from z,= 0" to z,=0".

°

To conclude the above discussion, consider a point on the x — z plane travels along the x
direction. This point receives no perturbation from the box until its forward Mach cone hits the
box leading edge. For example, at the canopy sill line (Fig 3.39), a finite jump of perturbation
2, 41

2z, 2
other words, the leading edge of the body box generates two waves; the outer wave goes over the
upper side and the inner wave goes under/to the lower side of the box. The outer (exterior) wave
generated from the leading edge of the box propagates into the exterior flowfield and actually
forms part of the required “physical” linearized supersonic exterior flow solution. However, the
inner (internal) wave generates a set of inner wave train within the interior domain of the body.
It is this inner wave train that creates the spurious velocity discontinuities which is respons1ble
for the solution deterioration at the aft-cone.

velocity occurs (i.€. , sign selection depends on the upper or lower Mach cone). In

ZONA6 and ZONA7 approximate a body surface by a set of fairly small boxes that are
approximately contiguous and “flat” in curvature. Clearly, if such a geometric discretization is
coupled with discontinuous smgulanty distribution such as constant source strength, then the
amount of cancellation of the spurious waves between boxes must depend on the differences
between their source strengths. For flat boxes with constant source, to keep such strength
difference small requires the change in streamwise geometric slope between adjacent boxes to be
kept small. This requirement sets the size criteria for box discretization which should minimize
the undesirable spurious velocity discontinuities to be generated in the external flowfields.
Without wave minimization, ZONA7 usually works well only for bodies with a simplified body
model, in which the actual geometry of the body should be smoothed out. For engine inlets, they
should be sealed and smoothed out as well.

Next, consider a body with a realistic geometry corner representing a canopy sill line as shown in
Fig 3.39. The canopy sill line generates a set of strong Mach waves hence results in a larger
jump in source strengths between the two adjacent, dividing the boxes.

exterior wave

/\
P\

canopy sill line

internal, /

\{ wave , \\ /
/

\}ﬁ

Fig 3.39 Propagation of Spurious Wave generated by the Real Geometry Corner

59




When the internal wave hits point P;, the panel at P; must produce a jump in source strength in
order to overcome the velocity discontinuity generated by the internal wave. In turn, it produces
another internal wave (also another exterior wave) which travels to downstream and it hits point
P,. As aresult, the box at P, must produce the same type of internal wave that will hit P; and so
on. This “wave train” process means that the original internal wave from the canopy sill line will
propagate downstream inside the body and the subsequent waves generated will be accumulated
for a closed-end body. For a realistic fuselage-like body with many geometric corners, numerous
internal waves generated by them will be accumulated downstream and will likely be further
accentuated if two of these waves land on one single box. Clearly, these numerous internal
wave-trains often degrade the (external) flowfield quality to an extent that the resulting flowfield
solution becomes unacceptable.

On the basis of the preceding discussions, it should now be clear that many velocity
discontinuities can be altogether present in the external velocity fields calculated by the constant
source approach and that most of the velocity discontinuities not only will be spurious in their
own right but also will produce unwanted repercussions on the rest of the configuration. For
such method straightforward attempts to calculate supersonic flow field streamlines are likely to
produce rather odd jagged shapes that become less smooth as the number of calculated points
increases.

To minimize the undesirable effect caused by the internal spurious wave-train, it is apparent that
techniques to improve continuity in the representation of both geometric and surface singularity
variation are required. The PANAIR Code (Ref 3.30) solves the steady aerodynamics by a high
order steady panel model. Linear source and quadratic doublet singularities are distributed over
each body box and the continuity conditions of singularity distribution across adjacent boxes are
imposed. The unknown steady source strength and doublet strength are solved by imposing
Neumann and Dirichlet boundary conditions on each boxes. However, extending PANAIR’s
high order panel method to unsteady one is extremely complex and computationally expensive.

Instead of using a high order panel method, ZONA7 employs the so-called “integral-averaged
boundary condition” to minimize the spurious waves resulted from the constant source
singularity (Ref 3.32). The integral-arranged boundary condition is a wave minimization

technique. It defines an averaged normal velocity V. on each box by a sample integral average
technique:

Vo = — [[ (74, - 7) ds, 3.71)

5

1
sP
where s, denotes the box area.

For steady aerodynamics, the integral-averaged boundary condition reads:

Vo = -(7-7) . (3.72)
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Comparing Eq 3.72 with the steady boundary condition of Eq 3.28, it can be seen that Eq 3.28 is
normally imposed at the control point whereas Eq 3.72 is satisfied over the box area. The

averaged normal velocity V. can be obtained by a four-point Gaussian Quadrature of Eq 3.71.
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Fig 3.40 Cone-Cylinder-Cone at M = 2.0 and o. = 0° Using ZONA7 with Wave Minimization

Fig 3.40 shows the results obtained by ZONA?7 with the integral-averaged boundary condition
(wave minimization technique) of the cone-cylinder-cone case at M = 2.0. Comparing to the
one without wave minimization shown in Fig 3.37, it can be seen that the stability of the solution
with the wave minimization technique is greatly improved.

It is found that the integral-averaged boundary condition works equally well for unsteady
aerodynamics. This is done by applying Eq 3.71 to the unsteady boundary condition of Eq
3.23b. Thus, the integral-averaged boundary condition offers a technique that minimizes the
spurious wave caused by the constant source singularity approach for both steady and unsteady
supersonic aerodynamics. '

3.11 Super-Inclined Boxes and Inlet Boxes

In a linearized supersonic flow formulation, the freestream Mach cone determines the region of
influence. Typical supersonic panel methods generally work well if the body under
consideration is fully immersed within this region of influence. However, when the supersonic
freestream becomes higher and/or the body is relatively thick whereby a part of the body would
be exposed outside of the zone of influence, most supersonic panel methods would cease to be
applicable.
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For boxes placed on the inlet surface (Fig 3.41a) or on the nose of a thick body (Fig 3.41b), the
local angles of incidence on some boxes would be greater than the freestream Mach cone angle,
this would render them lie outside of the freestream Mach cone. These boxes are called “super-
inclined boxes” and they are the causes for numerical singularities in the supersonic aerodynamic
influence coefficient computation.

‘\

, - i

§\ ! !

/ =3 !
Superinclined Inlet Boxes \ ) / Domain of Influence

(@)

Superinclined Boxes ~ Domain of Influence

(b)
Fig 3.41 Superinclined Box (a) on Engine Inlet (b) on Thick Body

To circumvent this numerical singularity problem that is associated with super-inclined boxes in
supersonic flow, we introduce a special treatment for the aerodynamic influence coefficient
computation in ZONA7. This engineering treatment adopts the corresponding oblique shock
_ angle for a cone (based on the Exact Euler Conical-Flow Solutions, e.g., Sims, Ref 3.33, 3.34) to
substitute the Mach wave angle. The local cone angle for each superinclined box is measured by
the angle between the freestream and the slope of the box. The corresponding oblique shock
angle is used as a modified Mach wave angle to position a “Mach Wave” slightly ahead of the
super-inclined boxes. It is this modified Mach angle that will determine the region of influence
of the super-inclined boxes.

3.12 Treatment of Engine Inlets
ZONAG6/7 can also include the aerodynamic computations for engine inlets. For body boxes on

the inlet face, the boundary condition must be modified for the “flow-through” condition. This
type of body boxes is called “inlet box™.
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Let 4, be the height of the stream tube containing the maximum mass flow which can enter the
inlet, length 4, be the height of the stream tube actually entering the inlet, the mass flow ratio
(MFR) is defined as:

A
A

MFR =

: | (3.73)

(7

For the inlet operating critically, no blockage occurs and the inlets are “flowing full”. In this
case A, is equal to A, and MFR = 1. For the subcritical flow condition, only the stream tube
with height A, enters the inlet. The remaining stream tube with height (4 — 4,) is spilled from
the intake. For this case, MFR becomes less than 1. For a given mass flow ratio (MFR), the
steady boundary condition expressed in Eq 3.28 can be modified for the inlet boxes, as:

Vg,-7 = -7 7)1 - MFR) (3.74)
and the unsteady boundary condition becomes:
V-7 =F,(1- MFR) (3.75)

Regions OPEN and BLOCKED are determined by the intersections of the stream tubes and the
box of the inlet. As such, the lengths of the two regions are proportional to the heights of the
stream tubes, 4, and (4 — 4,), respectively. Thus, the ratio of the inlet area covered by OPEN
boxes to the total inlet area reflects the mass flow ratio MFR, where MFR is determined by the
intersection of the stream tubes and the inlet box. '

The inlet in supersonic freestream usually requires the treatment of superinclined boxes (see Fig
3.41a). In ZONA7, the calculation of Aerodynamic Influence Coefficients (AIC) for an inlet box
with respect to other boxes adopts the modified Mach angle substitution developed previously
for superinclined boxes of thick bodies.
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4.0 ZTAIC: UNSTEADY TRANSONIC AERODYNAMICS
WITH STEADY PRESSURE INPUT

ZTAIC is ZONA’s Transonic Aerodynamic Influence Coefficient method for generating
unsteady transonic aerodynamics for lifting surface systems. With provided steady pressure
distribution from CFD solutions or measured data on each wing section, ZTAIC generated
transonic (modal) AIC’s, which necessarily supports effective unsteady aerodynamics/aeroelastic
computations. Hence, in addition to the ZONA6 input, the supplied wing-section steady
pressures are required to be inputted by the user.

Unsteady subsonic and supersonic aerodynamic forces and moments can be well predicted by
ZONAG6 and ZONA7. But in the transonic flight regime these methods cease to be applicable
due to the nonlinear compressibility and the presence of transonic shock waves. The nonlinear
Transonic Small Disturbance Equation (TSDE) can be time-linearized with respect to the motion
amplitude. This allows the formulation of a modal-based ZONA’s Transonic Aerodynamic
Influence Coefficient (TAIC) matrix method. In this way, ZTAIC generates unsteady transonic
aerodynamic forces and moments that properly account for the transonic effects including shock
oscillations up to the linear order in amplitude. The unique features of ZTAIC include:

- ZTAIC input requirement is nearly identical to these of ZONA6 and ZONA7 except the
additional user-supplied steady pressure input.

- The user-supplied steady pressure input can be obtained either by wind tunnel measured data
or a high level CFD solver. These steady input contains sufficient detail of the transonic
shock structure; hence, the resulting unsteady pressures in terms of unsteady shock strength
and location are found to be well predicted.

- ZTAIC does not require grid generation. The grid system for solving the unsteady transonic
small disturbance equation is built in ZTAIC. ZTAIC can automatically optimize the mesh
of the grid system according to given Mach number, oscillating frequency, and steady
pressure input.

- ZTAIC generates a transonic A/C matrix using a Modal-based AIC (MAIC) approach.
MAIC represents a frequency-domain aerodynamic transfer function whose definition is the
same as that of ZONA6 and ZONA?7.

In this section, we will discuss:

Background of ZTAIC

Inverse airfoil design scheme based on the users supplied steady C, input
Time-domain unsteady transonic aerodynamic computational scheme of ZTAIC
Transforming ZTAIC to the frequency-domain

Modal AIC (MAIC) approach
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41  Background of ZTAIC

In the transonic flow regimes, the wing (body) thickness renders the problem nonlinear and the
mean flow nonuniform (for an unsteady problem). Thus the current treatment of the unsteady
transonic mostly adopts the Computational Fluid Dynamics (CFD) methodology. Currently
there exists a number of well-practiced CFD unsteady transonic methods presumably ready for
aeroelastic applications (e.g. CFL3D, ENS3DAE and ENSAERO, Refs 4.1, 4.2, 4.3). However,
their acceptance by the aerospace industry for rapid analysis and design is still hampered by
problems in grid generation, CFD/CSD interfacing and affordable computing time. For example,
to perform a high-level (Navier-Stokes) CFD computation for a single wing structure flutter
boundary would take days if not weeks of CPU time on a mainframe computer. Thus, if
rendering such high-level CFD methods for flutter boundary prediction of a whole aircraft
should take up much longer CPU time which will not be affordable for the industry. On the
other hand, solving the unsteady TSDE equation using a lower-level CFD method such as CAP-
TSD (Ref 4.4) should be computationally efficient. But CAP-TSD is confined by its self-
generated steady-flow solution in that the TSD assumption would restrict its applicability to
wings with thick-airfoil or supercritical-wing sections. If the viscous effect is not introduced in
the steady mean flow of an unsteady TSD method such as CAP-TSD, then the resulting shock
position and strength, and hence the flutter solutions would be invalidated.

Further attempts in an MDO environment have been somewhat discouraged by their
incompatibility with structural FEM. Although current CFD efforts are directed towards meeting
the FEM compatibility, questions of affordable computing time for each MDO cycle remain
outstanding. Toward this end, we have re-examined the unsteady transonic aerodynamic
methodology critically from the viewpoint of its FEM compatibility and its expediency for
aeroelastic analysis and design applications. The result of this re-examination effort is the
development of ZTAIC.

Since 1988, ZONA has been following up on the development of the Transonic Equivalent Strip
(TES) method originally supported by NAVAIR/ONR (Refs 4.5, 4.6) for unsteady flow
computation of arbitrary wing planforms. The TES method consists of two consecutive steps
added to a given nonlinear Transonic Small Disturbance code such as ZTRAN (Ref 4.7); namely
the chordwise mean flow comrection and the spanwise phase correction. The chordwise mean
flow correction is accomplished by an inverse airfoil design scheme incorporated in ZTRAN.
The computational procedure require direct steady pressure input from other CFD codes or
measured data. It does not require airfoil shape or grid generation. Meanwhile, all the mean-
flow shock jumps are properly included in the resulting unsteady acrodynamics. Based on the
TES concept, ZONA has further developed the ZONA Transonic Aerodynamic Influence
Coefficient (ZTAIC) code by adopting a Model-based AIC (MAIC) procedure (Ref 4.8). ZTAIC
has been successfully applied in a Multi-Disciplinary Optimization (MDO) software system for
aeroelastic applications (Ref 4.9). Shown in Fig 4.1 is a flow chart presenting ZTAIC procedure
for flutter analysis.

65




GIVEN FLOW PARAMETERS - 3D STEADY MEAN-FLOW
AND WING PLANFORMS PRESSURE INPUT
¥
EQUIVALENT-AIRFOIL
DESIGN 1AF2
Y l
WNW AND EQUIVALENT-AIRFOIL
GIVE?/IggE SHA?’Z}SI > TUNSTEADY COMPUTATION
ZTRAN2
Y ‘
3D UNSTEADY CORRECTION
MODAL-BASED AIC (MAIC) }== AND PRESSURE OUTPUT
Y
ZTAIC FLUTTER ANALYSIS

Fig 4.1 Flow Chart of ZTAIC Computation Procedure

Results computed by ZTAIC have been validated with wind tunnel data for a number of wing
planforms with various aspect ratios. These include:

Unsteady Pressures: Measured Data Input
o The Lessing Wing (Ref 4.10)

Fig 4.2a shows the Lessing Wing with a rectangular planform of aspect ratio 3.0 and widtha 5 %
thick parabolic arc airfoil section. Unsteady pressure magnitudes and phase angles are presented
in Figs 4.2b and 4.2¢ for spanwise locations at 7= 0.5, 0.7 and 0.9 (7 = 2y / b). It is seen that
the ZTAIC results correlate reasonably well with two sets of experimental data (1% and 2™ runs).

o The LANN Wing (Ref4.11)

Fig 4.3 shows the dimensions of the LANN Wing Planform of aspect ratio 7.93 and a 12 % thick
airfoil section as well as the in-phase and out-of-phase pressures of the LANN Wing with
pitching axis at 62 % root chord. Throughout three spanwise locations considered (77 = 32.5 %,
65 % and 95 %), the present results for the upper surface compare more favorably with NLR
measured data that do the XTRANS3 results (Ref 4.12). Since subcritical flows are predicted for
lower surfaces, the unsteady pressures do not contain the shock jump, as expected.
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o The F-5 Wing with Control Surface (Ref 4.13)

Fig 4.4 compares in and out-of-phase pressures at two flap sections of F-5 wing at M, = 0.9.
Close agreements are found with XTRAN3S (Ref 4.14) results and the NLR measured data.

Flutter Results
o The AGARD Standard 445.6 Wing (Ref 4.15)

The 445.6 Wing planform, has an aspect ratio of 4 and a NACA 65A004 airfoil section. It has
two structural models: the solid wing and the weakened wing. This is an ideal case to
demonstrate ZTAIC’s AIC capability. The aerodynamic shapes of these two models remain the
same, but structurally they have two different sets of structural modes associated with the solid
wing and the weakened wing. For this reason, the same modal AIC can be shared by both
models. Hence, the modal 4/C computed for the weakened wing can be saved allowing for a
warm-start for the solid wing. Fig 4.5 presents the flutter results of the weakened wing. At a
subsonic Mach number AM_ = 0.678, the ZTAIC result is in good agreement with that of

ZONAG, as expected. At other supercritical Mach numbers where M, = 0.9 and 0.95, ZTAIC

predicts a pronounced transonic dip which is comparable to that predicted by the CAP-TSD
code.

Fig 4.6 presents the flutter results of the solid wing. The stored modal A/C from the weakened
wing is warm-started here. Consequently the computing time for each flutter point requires only
one minute, in contrast to the weakened wing case which requires five hours of CPU time for a
flutter point on a SUN SPARC 20 workstation.
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4.2  The Chordwise Mean Flow and Spanwise Phase Correction Procedures

Governing Equations

The unsteady Transonic Small Disturbance (TSD) equation reads:
[Q-M)-(@+DM.D, 10, + D, + D, - 2M2®, - M2D, =0 4.1

Similar to Eq 3.2, the TSD potential @ can be expressed in terms of the steady TSD potential
¢, and the time-linearized TSD potential ¢ with respect to linear amplitude, i.e.:

® = 4(xxt) + 4(xy.21) (4.2)

where ¢, and ¢, should satisfy the following equations, respectively.
[Q-M2) - (F + DMo b 1o + Gy + b = 0 (4.3)

A-MDpo + O+ DML ) + by + b = 2Mi + Mo 4, (49)

Eq 4.3 is the famous steady TSD equation due to von Karman. Eq 4.4 is the so-called time-
linearized equation derived by Landahl (Unsteady Transonic Flow, Pergamon Press, 1961, Ref
4.16).

Notice that Eqs 4.3 and 4.4 are the transonic counterparts of Eqs 3.4 and 3.5 for
subsonic/supersonic linearized formulation.-

The premises of the Transonic Equivalent Strip (TSE) method (Ref 4.5) is to propose utilizing a
two-dimensional TSD potential solver to solve Eq 4.4 in conjunction with a 3D linear potential
solver such as ZONA6. LTRAN2 (Ref 4.17) was originally selected for this 2D solver. But
ZONA's improved ZTRAN is to replace LTRAN2 in all our subsequent development. The
governing 2D TSD equation is nothing more than a 2D version of Eq 4.1, viz.:

[(A-M}) - (y +DM2D D, + @, = 2M2D, + M. O, 4.5)

The LTRAN? of Ballhaus and Goorjian solves Eq 4.5 with two alternatives: the Harmonic
Oscillation Method and the Indicial Method (Refs 4.17, 4.18). The latter method amounts to an
expedient method of time linearization of Eq 4.5 directly by CFD means. Equivalently, their
indicial method solves a 2D version of Eq 4.4, viz.:

(A-MDp + (7 + DMZ(P @) + O1w = 2M2 0 + Mo, (4.6)

where ¢, , the 2D steady TSD potential, satisfies the 2D Karman equation, i.e.:
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[(A- M) - (7 + DM @ 1Pore + P = O 4.7)

Boundary Conditions

On the mean surface of the wing planform, the potentials must satisfy the linearized tangency
condition, i.e.at z = 0,

-
/8

77(x,,0) “s)

olH, + H.]

where: is the wing airfoil-section thickness distribution at spanwise station y;
is the mode shape
is the thickness ratio

is the oscillation amplitude, and 6 < =

ORI

The tangency condition along with the wake condition imposed here are the typical linearized
boundary conditions, also adopted in the previous linearized subsonic and supersonic potential
formulations. Hence, one assumes that ¢, and ¢ are decoupled throughout except the

governing equation, Eq 4.4, itself. For TSD potentials ¢, and ¢, of Egs 4.6 and 4.7, they
should satisfy the same boundary conditions as above except in the 2D sense.

TES Solution of Eq 4.4

Proposed earlier by Liu et al. (Ref 4.6) and further supported by Oyibo’s Separability Principle
for Full-Potential Transonic Solutions (Ref 4.19),a ¢, solution of Eq 4.4 can be derived, i.e., at
a spanwise location y = y;,

¢ (x,¥,2,t) = ¢,i(x,z,t) F(yis ) 4.9)
where: @, is the 2D unsteady solution by ZTRAN at a spanwise location y = y;
F is Oyibo’s spanwise exponential decaying function
J; is the decaying parameter measured by the chordwise (2D) to the spanwise

(3D) lift slope ratio.

Clearly, the same separability of ¢, in Eq 4.9 showed also holds for ¢, of Eq 3.5, i.e.:

¢ll('x:yizzzt) = ¢ll(x>z’t) G(ynax) (410)
where the superscript “¢” denotes the purely “linear” subsonic perturbed potential.

Pressure coefficients

The linearized unsteady pressure coefficient reads:
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AC, = -2 (4, + &) @.11)

P

Again, Eq 4.11 holds in general for unsteady transonic potential ¢, or ¢, as well as for unsteady

subsonic potential ¢ or ¢. Combining Eqs 4.9, 4.10 and 4.11 yields the TES pressure
relations for the correction procedure, i.e. aty = y;:

AC,™ = AC," f,(AC,',AC, ) - exp{(4-,) ¥ } (4.12)

P3

where superscripts N and ¢ denote transonic and subsonic unsteady pressures and AC‘,JN and

AC,,ZN denote the 3D and 2D unsteady pressure, respectively. Hence, the proposed correction
procedures for TES lies in the pressure relation given by Eq 4.12. The chordwise mean-flow
correction is supplied by “injecting” the correct steady pressure input in AC,,ZN , Which is to be

computed by ZTRAN. Recall that steady pressure input is provided by measured data or by a
high-level CFD solution. The way to “inject” this input into ZTRAN is accomplished by an
inverse airfoil design (IAF2) scheme to be discussed in the next section. The spanwise phase

correction is accomplished by providing the linear pressure distributions ACPB‘ and ACPZ' in
the function “ f; “, whereas they are obtained from ZONA6 computation.

The exponential decaying parameters A, and ¢; are measures of 3D to 2D lift curve slope ratios
(for transonic and subsonic, respectively). For simplicity, the current TES procedure maintains
at an approximated level where 4 = ¢;.

Finally, the two correction procedures combined in Eq 4.12 have the physical meaning that: i)
the chordwise correction accounts for reproducing the nonlinear structure of the three-
dimensional mean flow, ii) the spanwise phase correction is responsible for the adjustment of
the spanwise phase lag of the pressure according to an equivalent linear three-dimensional flow.
Clearly, shock waves cannot be created or destroyed by any process of these corrections.

4.3  The Inverse Airfoil Design (IAF2) Scheme

It has been pointed out by Fung (Ref 4.20) and Lambourne (Ref 4.21), among others, that an
accurate steady state with correct shock jump and locations is essential for correct unsteady
-aerodynamic computations. It is believed that TES in general should be adequate in handling the
classical flutter analysis in the transonic regime, because its chordwise mean-flow correction
could result in the proper shock position and strength including viscous effects. This correction
procedure is made possible by adopting the externally provided steady pressure input from
measured data or from high-level CFD computations. To “inject” the steady pressure input into
ZTRAN of the TES method requires to build in an equivalent airfoil design procedure using an
inverse design algorithm called IAF2. In doing so, a proper steady flowfield can be generated
corresponding to the input steady pressure prescribed on the airfoil surface.
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(B) NORTHROP P-5 WING (C) NORTHROP F=5 WING
M_ = 0.90 H_ » 0.95

Fig 4.7 Steady Pressure Inputs and Equivalent Airfoil Qutputs at various Spanwise Locations
(o upper surface, A lower surface, — presents TES data):

a) LANN Wing at Mean Incidence «, = 0.62°, M_ = 0.82 (NLR Measured Data);
b) Northrop F-5 Wing at Mean Incidence e, =0°, M_ = 0.90 (NLR Measured Data);
¢) Northrop F-5 Wing at Mean Incidence «, = 0°, M_ = 0.95 (XTRAN3S-Ames Input)
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Based on the user supplied steady pressure input, an Inverse Approximate Factorization scheme
(IAF2) proposed by Fung and Chung (Ref 4.7) is adopted to perform an inverse airfoil design
according to Eq 4.7. The velocity potential obtained from integrating the pressure on the slit
representing an airfoil is known up to an arbitrary constant. To determine this constant, it is
required that a closure condition is imposed, e.g. the resulting slope distribution being equivalent
to a closed body. This constant a being updating during the numerical iteration process until a
converged solution satisfying the closure requirement is obtained. Fig 4.7a and Fig 4.7b display
the pressure inputs for upper and lower surface at M_= 0.82 and 0.9 for the LANN and F-5

wings, respectively, based on the NLR measured data. The input data in general are shown by
open symbols whereas the pressures computed by the JAF2 scheme by solid lines.

Fig 4.7c demonstrates the flexibility of the pressure input scheme using inverse airfoil design, in
which the computed pressures by XTRAN3S of F-5 wing at M=0.95 is adopted as the steady
pressure input. The strong shock close to the trailing edge in this case is considered a
challenging case for an airfoil design code. As can be seen in Fig 4.7c, the present IAF2 showed
excellent comparison between the XTRAN3S pressure input and the design output. Further
studies in using the present IAF2 for pressure input/output verification showed the present
scheme is indeed very robust and can generate accurate pressure flowfield associated with a wide
class of transonic pressure input with transonic shock jumps.

4.4  Frequency-Domain Pressure Coefficient by Indicial Method

For 2D unsteady transonic computation, the ZTRAN code, similar to LTRAN2, also has two
alternative methods, namely the harmonic oscillation method and a method based on a time
linearized scheme proposed by Fung et al. (Ref 4.22). Most unsteady TSD codes like LTRAN2
and XTRAN3S generated their steady aerodynamics and pressures according to the steady
TSDE. Unlike these methods, ZTRAN employs the inverse airfoil design to inject the externally
provided steady pressure input and generate the corresponding steady computation. Thus, this
steady pressure input procedure removes the mandatory usage of self-generated steady
aerodynamics. Instead the steady pressure input can be supplied from the results of a high-level
CFD computation or wind tunnel measured data. In this way, the inverse airfoil design scheme
ensures that the nonlinear effects including shock structure and viscous effects are closely
reproduced and properly incorporated into the follow-on unsteady aerodynamic computation
scheme.

Both the harmonic oscillation scheme and the time-linearized scheme of ZTRAN yield the
unsteady aerodynamic solution in time domain. The former scheme can be further linearized if
the oscillatory amplitude is kept sufficiently small.

To achieve a sinusoidal oscillation solution (linearized), it is required to apply the following
procedures. First, the aerodynamic-response solution is to be selected only after a few cycles of
oscillation, when the transient solution is seen to be diminishing (or the response solution
becomes closely periodic). Next, Fourier analysis is applied to the selected last-cycle response
solution in which only the first harmonic component is retained, whereas all the higher
harmonics are filtered through in this step. From the first-harmonic solution, the pressure
magnitude and phase angle can be properly identified. This method for the first-harmonic
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solution works fine for the K and P-K flutter methods, except that each solution obtained
corresponds to only one single frequency input, hence it tends to be computationally ineffective.
For computational expediency, the indicial method is preferred.

The indicial method, first introduced by Tobak (Ref 4.23), offers a rapid procedure for
converting the time-domain solution of a CFD code to the frequency domain. Normally, the
objective of the indicial method is to obtain the “aeroelastic transfer function” of an aerodynamic
quantity of interest in the frequency domain, i.e.:

H(ik) = 2(H(T)) (4.13)

where:
kT

2()=[ (e dr (4.14)

. . tV, . . . .
is the Fourier transform of (-), T = -T“; is the non-dimensional time and H denotes the

aeroelastic transfer function of an aerodynamic quantity of interest such as Cp, Gy, ... etc.

Ballhaus and Goorjian (Ref 4.24) have demonstrated the applicability of the indicial method for
transonic aerodynamics. However, the step function of the indicial method has numerical
difficulties due to the evaluation of the Dirac delta function associated with the derivative of the
step function at = 0. Later, Seidel, Benett and Ricketts (Ref 4.25) introduced a pulse function
method in the XTRAN3 code. The pulse function is defined as:

f(T) = 5T (4.15)

where 7, is the non-dimensional time at which the maximum amplitude is reached and W
represents the width of the pulse. The desired aeroelastic transfer function is then obtained by
solving the following equation numerically:

_ 7(XD)

H(ik
® = Z7my

(4.16)

where X(7) is the aeroelastic response subject to the pulse function /(7).

Because the pulse function and its derivative are continuous, it removes the numerical difficulty.
Eq 4.16 also suggests that the entire frequency-domain solution can be obtained by Fourier
Transform on X(7) and f{T) in a post-processing sense. Therefore, instead of repeated
computation for each frequency by the sinusoidal method, the pulse function method provides
the entire frequency-domain unsteady aerodynamic solution with only a single unsteady
aerodynamic computation, leading to a rapid procedure for frequency-domain solution.
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4.5 Modal Aerodynamic Influence Coefficient (MAIC) Approach

A formal AIC matrix should contain purely aerodynamic information relevant to the governing
equation. However, to generate this type of A/C from CFD methods such as the ZTRAN code
remains a major undertaking. The validity of the MAIC approach is based on the assumption of
the amplitude linearization principle that states: “the linearization of the aerodynamics for an
aeroelastic system in any flow regime can be assured if the modal amplitude is kept sufficiently
small at all times”. In fact, this is equivalent to the principle of time linearization. This principle
suggests that an expedient modal-based A/C procedure can be developed readily.

Consider a typical CFD computation procedure, in which the incremental pressure distribution is
related to a given pre-defined baseline modal vector by:

(C,), = ¥, i=1,..,m 4.17)

where A is a nonlinear CFD operator that generates the incremental pressure due to a given

baseline modal vector ¢. For m number of baseline modal vectors, Eq 4.17 becomes a matrix
equation:

[P] = ATH] (4.18)
where:
[P] = [{C,}; ... {C,}. ] (4.19)
is defined as the incremental pressure matrix.
and: :
[®] = [{¢}; ... ¥} ] (4.20)

is defined as the baseline moda} matrix.

With the amplitude linearization principle imposed, the operator A can be approximated by a
linearized operator £. Thus:

[P] = Z[P] ‘ (4.21)

The baseline modal matrix is defined as a set of displacement vectors that could be superimposed
to closely represent the deformation of the structure. Let h be the structural deformation vector,
the relation between 4 and the baseline modal matrix reads:

{h} = [®]{a} (4.22)

where a’s are the best-fit coefficients, to be determined by the following least squares procedure:
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{a} = [[[®]" [®]1" [®]" ] {b} (4.23)

Let C, be the incremental pressure vector due to the structural deformation 4, then C, can be
related to h by the same linear operator:

{C,} = L{h} , (4.24)
Substituting Eq 4.22 into Eq 4.24 yields:
(C,} = Liol{a} (4.25)

Combining Eqs 4.21, 4.23 and 4.25 gives a matrix that directly related the incremental pressure
vector to the structural deformation 4:

{C,} = [MAIC){n} (4.26)

where:
[MAIC] = [ [P] [[@]" [@1]" [®]" ] (4.27)

is the sought modal-based 4/C matrix.

The modal-based AIC approach is a general procedure which could be applied to any CFD codes.
Chen et al demonstrated the MAIC approach in a transonic aeroelastic optimization problem
(Ref 4.9). In Ref 4.9, the structural modes of the initial structure are defined as the baseline
modal matrix. The modal-based 4/C matrix is then constructed from the baseline modal matrix
and their associated unsteady pressure matrix. The constructed modal-based matrix is computed
once and reused in the structural optlmlzatlon loop. In so doing, considerable saving in
computer time is achieved.

The ZTAIC method requires a somewhat different type of MAIC matrix. For a stripwise
unsteady transonic aerodynamic computation, only a 2D-baseline modal AIC matrix is needed.
For high aspect ratio wing structures involving primarily spanwise bending and torsion
deformations, 2D rigid pitch mode and 2D rigid plunge mode are used to represent the local
structural deformation at each strip. For wing sections containing leading edge and trailing edge
control surfaces, a 2D leading edge and 2D trailing edge modes are used to represent these
control surfaces at the strip. For low aspect ratio wing planforms where chordwise bending
deformation may occur, a 2D chordwise bending mode is introduced. Altogether, five modal
vectors are used to define the 2D baseline modal matrix.

With the 2D baseline modal matrix in hand, the generation of the MAIC matrix for ZTAIC is a
straight forward procedure. The formal AIC for relating the structural deformation to the
aerodynamic forces can be obtained 51mply by multiplying the area of each aerodynamic boxes
to the MAIC matrix. This gives:
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{F.} = q.[4IC]{h} (4.28)

where:
[AIC] = [R][AREA}[MAIC]

and:
[AREA] is a diagonal matrix containing the area of each aerodynamic boxes.

[#] is a K-set by J-set matrix containing the normal vector components of each
aerodynamic box. The exact expression of [7] can be found in Eq 3.62.
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5.0 ZONA7U: UNIFIED HYPERSONIC/SUPERSONIC
UNSTEADY AERODINAMICS FOR WING-BODY
AIRCRAFT CONFIGURATION

ZONA7U extends the applicability of the lifting surface method of ZONA?7 into the unified
hypersonic and supersonic flight regime. The unsteady lifting surface option of ZONA7U
(formerly ZONAS1U) takes into account the nonlinear wing thickness effect and the flow
rotationality effect due to strong shock waves, whereas these effects are neglected by the linear
theory and overestimated by Piston theory. In addition to the ZONA?7 input, only the wing-
section profiles are required to be inputted by the user. In this section, we will discuss:

Background of ZONA7U

Review of Piston theory and Third-Order theories

Hypersonic Similitude

Unified Hypersonic/Supersonic Lifting Surface method of ZONA7U
AIC matrix of ZONA7U

5.1  Background of ZONA7U

Exact unsteady supersonic three-dimensional (3D) linear theory has been sufficiently developed
for the treatments of lifting surfaces, e.g. the ZONA7 method. Nonetheless, the lifting surface
method incorporated in ZONA?7 is confined to flat-plate wing sections, in which no thickness
effect can be accounted for. But such a thickness effect at moderate to high supersonic Mach
number is of practical importance, for it should usually lower the predicted flutter speed.

The lifting surface method of ZONA7U adopts the unified supersonic and hypersonic lifting
surface method ZONAS1U (Ref 5.1). ZONAS51U combines the supersonic lifting surface
method of ZONAS51 with a nonlinear correction matrix E; based on Donov & Linnell’s
uniformly-valid higher-order hypersonic/supersonic scheme. For aeroelastic applications,
ZONAS1U has been applied to various wing planforms with thickness distributions. Some of
these are shown as follows: -

e Rectangular Wing with Thickness Profile

Fig 5.1 presents the variation of generalized aerodynamic forces (Cy_) with reduced frequency &

for an oscillating wedge (=10 ) at M=3.0. Results of ZONA51 and ZONA51U are compared
with that of the Euler-Perturbed Euler Characteristics (PEC) method (Ref 5.2). Good correlation
is found between the results of ZONA51U and the Euler-PEC solution. Substantial departures
exist between the ZONAS1 and ZONAS1U results throughout the frequency range, indicating
clearly the persistent nonlinear thickness effect.
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3) Wedge Profile b) Diamond Profile
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Fig 5.1 Stability Derivatives for an oscillating Wedge vs. Reduced Frequency:
(M =3.0,h =0.5¢, 6 =10°
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Fig 5.2 Damping-in-pitch C, m, VS- Semiwedge
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Fig 5.3 Stiffness Derivative C ,,  and Damping-in-
pitch Derivatives C m; VS Semiwedge Angle,
h=0.5¢c: M= a)5.0, b) 10.0

Fig 5.2 presents the variation of damping-in-pitch derivative with wing thickness o for a

diamond airfoil section at M = 2.0, 5.0 and 10.0.

For M = 2.0, nonlinear results of Van Dyke

(Ref 5.3), Piston theory and ZONAS1U agree well up to o=15°. When Mach number is
increased to M= 5.0 and 10.0, all nonlinear results tend to over-predict the damping derivatives
except that of ZONAS51U. In fact, 51U yields results in close agreement with Hui’s Exact Euler
Solution (Euler-Hui, Ref 5.4) up to o=15° for all Mach numbers considered. By contrast, the
linear theory such as ZONAST1 fails to account for the thickness effect.
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Fig 5.3 presents the Mach number variation of the stiffness derivative and damping-in-pitch
derivative for a diamond profile with thickness (o=15°). It is seen that the ZONAS51U results
essentially follow the trend of the Euler-Hui solutions throughout the Mach range. Other
nonlinear results begin to depart from the Euler solution around A = 4.0 and continue to diverge
from it as the Mach number increases. In fact, among all of the above results, only results of
ZONAS1U and the Euler-Hui exact solution would correctly approach the Newtonian limit.

e Panel Flutter

Shown in Fig 5.4 are two flexible panels (membranes) mounted on both surfaces of a wedge
(0 =2°). The motion of the oscillating panels is described by the assumed mode:

z=¢ sin(ﬁlz—[—x) e'*!
L

where N=2 and ¢ is the amplitude of vibration.

Steady Shock Wave

z /
Steady Mach Wave
| /
Z

L

it

M
—> x
— — Wedge
Oscillating Panel g:raf:ce edg

z2= esin(ﬂfx e

Fig 5.4 Oscillating Panels Mounted on a Wedge with Semi-Wedge Angle ¢ = 2°

Fig 5.5 presents the effect of reduced frequency on generalized aerodynamic forces for these
vibrating panels at M = 5.0. Generalized Aerodynamic Forces (GAF) results in Oy, based on the
linear theory, Piston theory and ZONA51U are compared with the Euler-PEC solution. Similar
to the earlier observation in the case of flap oscillation, ZONA51U in Fig 5.5 substantially
improves the pressure magnitude over that of the linear theory. For the reason stated earlier,
only slight improvement of the phase change is found in the present result. Once again, the
results of Piston Theory show practically no phase change for all cases considered.
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Fig 5.5 Effect of Reduced Frequency on Generalized Aerodynamic Forces for Oscillating
Panels (M =5.0,6=2°,N=2)

o SAAB Canard-Wing
Shown in Fig 5.6 is the aerodynamic model of a SAAB Canard-Wing combination. Biconvex

airfoil sections of 6% in thickness are assumed for both canard and wing. Two modes, the wing
plunging and the canard pitching about its midchord, are considered.
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L NS S A — ==

ANNSNRuBuuY . ==
L

Fig 5.6 Paneling Scheme of SAAB Canard-Wing
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In Fig 5.7, variation of generalized
aerodynamic forces (), with Mach
number is presented at three reduced .
frequencies, £ = 0.01, 0.5 and 2.0. It
is seen that the trends of Q;; due to
ZONAS51U is different from that of 5
the linear theory in the hypersonic
range (between M = 50 and M = : o
20.0) showing strong canard-wing I
aerodynamic interaction. This range
is found to be related to the canard-
wing dimensions. As can be seen
from Fig 5.6, such interaction is
expected to vanish when the
hypersonic Mach number is increased
up to M = 21, where the first Mach o1
wave of canard detaches from the as
wing trailing edges. -1

Re(Q12)
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Fig 5.7 GAF Q,; of SAAB Canard-Wing vs. Mach Number:
Mode 1 Wing Plunging and Mode 2 Canard Pitching
about Midchord

o Wing Flutter

Two wing planforms are selected for performing flutter analysis using ZONAS51U:
a 70-degree delta wing and a 15-degree swept untapered wing.

o 70-Degree Delta Wing

Fig 5.8a presents flutter boundaries for a 70-degree delta wing with a 6% thick diamond airfoil

section computed by ZONAS51U and Piston theory.

The flutter experiment was carried out at NASA Langley by Hanson and Levey (Ref 5.5). The
wing model used was essentially a flat-plate. According to Ref 5.5, four measured modes are

used in the present flutter analysis. Half of the delta planform is subdivided into 10 x 10 panels.

The flutter boundary consists of the flutter points obtained for six Mach numbers (M = 1.19,
1.30, 1.64, 2.0, 2.25 and 3.0). Flutter results computed by CAP-TSD (Ref 5.6), Piston theory,
ZONAS51 and ZONAS51U are compared with the measured data. Several observations on Fig

5.8a can be put forth:

- ZONAS5I1U predicts flutter boundary that is more conservative than that of ZONAS1

indicating that the thickness effect indeed reduces the supersonic flutter speed. Piston

theory on the other hand tends to over-predict the flutter speeds.

- In fact, ZONAS1U predicts the most conservative flutter boundary among all methods
considered. Flutter boundary of CAP-TSD, on the other hand, appears to be the most

non-conservative.
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Fig 5.8b Flutter Speed and Flutter Frequency for a 15° Swept Untapered Wing
(M =1.3 and 3.0)
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e 15-Degree Swept Untapered Wing

Fig 5.8b presents two computed flutter points for a 15-degree swept untapered wing of aspect
ratio AR=5.35at M=1.3 and M= 3.0.

The flutter experiment was carried out at NASA Langley Field by Tuovila and McCarty (Ref
5.7). The wing model used is a cantilever wing with a 2% thick hexagonal airfoil section.
According to Ref 5.7, eight modes generated by MSC/NASTRAN are used in the present flutter
analysis. Half of the wing planform is subdivided into 10 x 10 panels.

Computed results of ZONAS1, Rodden’s method (Ref 5.8) (employing ZONAS1), and
ZONAS51U are compared with test data of Tuovila and McCarty. Note that Rodden’s method
adopts coefficients from Van Dyke’s theory and Piston theory and corrects upon results of
ZONAS1. While the predicted flutter speeds due to Rodden and ZONAS51U are slightly non-
conservative at M = 1.5, both are conservative at M = 3.0. Overall, the listed results confirms
once again the impact of thickness on flutter speed. The linear theory, as computed by ZONAS51,
yields non-conservative flutter points at both Mach numbers.

5.2 Review of Piston Theory

Subsequent to the original publication of Lighthill (Ref 5.9), Ashley and Zartarian (Ref 5.10)
first proposed the application of Piston Theory for flutter analysis and other aeroelastic
applications. They found that the nonlinear thickness effect provided by the theory indeed
results in a more conservative flutter boundary, which was validated by measured data. Based
on a criterion that if any one of the conditions holds, namely:

M?>>1, kM? >>1 or KM?>>1 ;.1

Landahl, Ashley and Mello-Christiansen (Ref 5.11) further established a consistent linearized
Piston Theory. With this theory, they obtained an explicit flutter solution for a typical two
dimensional wing section. The flutter speed according to their theory approaches those predicted
by the exact linear theory (Ref 5.12) as the Mach number increases, whereas they tend to depart
from the latter as the Mach number decreases toward unity.

Originally, Lighthill’s Piston Theory accounts for the effect of the nonlinear thickness in the high

Mach number range such that M? >>1. It imposes the condition that the magnitude of the
piston velocity never exceeds the speed of sound in the undisturbed fluid. The aerodynamics of
this analogy is to state that:

M5<1 and  kMS<1 (5.2)

where ¢ is the thickness or oscillatory amplitude of the airfoil, whichever is the larger; and £ is

the reduced frequency defined as & = —g—li

[--]
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According to his large-Mach-number expansion theory, Landahl (Ref 5.13) pointed out that
Piston Theory amounts to ignoring a second order term in his linear amplitude sequence. Hence,
the valid range of Mach number for Piston Theory can be defined by the criterion:

51 <M< and M?>>1 (5.3)

In terms of Tsien’s Hypersonic Similarity parameter (Ref 5.14) K, where XK = MJ, Eq 5.3
reads:

523 <K <1 (5.4)

For a wedge of semi-angle o=10°, X falls in the range of 0.31 <X < 1.0. Inspection of results
obtained in Fig 5.9 shows that the valid lower bound of the Mach numbers is really more
restrictive than the above criterion so indicated, whereas the upper bound K < 1 is less restrictive.
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Fig 5.9 Surface Pressure of a Wedge According to Various Supersonic/Hypersonic Models:
t=tan 10° y=1.4 '

While the condition K < 1 for Piston Theory may be somewhat relaxed to include regions near K
~ 1.0, the condition kK < 1of Eq 5.2 is a rather stringent one. For unsteady hypersonic flow, if
K ~ O(1) then the reduced frequency k must be kept very small. The failure of Piston Theory in

the moderate to high range of k is evidenced by the Panel Flutter results presented in the work of
Chavez and Liu (Ref 5.2). '

Following the suggestion of Morgen,v Herchel and Runyan (Ref 5.15), Rodden and Farkes (Ref
5.16) have arrived at a generalized expression for the pressure coefficients, i.e.:

Cp = —2-5- [cl (1-) +c, (1-) + ¢ (—W—J } (5.5)
M a, a, a,
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where w represents the piston upwash.

For Piston Theory:

C]=1, cz':},TH’. c?‘:?’—ﬂ (56)

For Van Dyke’s second order theory (Ref 5.17):

_M L MG+ - 4m’

c pJR SR
1 2
m’ 4mt

(5.7

where m* = M? - 1, and y is the ratio of specific heats.

A modified Piston Theory is recommended to replace c¢; and c; of Eq 5.6 by that of Eq 5.7
rendering an extension to the lower Mach number region.

The ¢; and ¢; of Van Dyke in fact were first obtained by Busemann (Ref 5.18), in which he also
included a third-order term based on a consistent expansion of the simple wave theory, i.e.:

1
6m’

{a, M® + b, M® + c,M* +d,M* + ¢, } (5.8)

C; =

where:

a, =y +1, b, =2y -7y -5, ¢, =10(y +1)

d, =-12, e, =8

Following Busemann, Donov (Refs 5.18, 5.19) further developed a comprehensive theory in
which he obtains series expansion solution up to the fourth-order term accounting separately for
the isentropic part and the rotational part due to simple wave and shock wave respectively. Here,

Donov’s third-order term including shock wave, also derived independently by Carafoli (Ref
5.20), reads:

c; = 6Mlm7 {aMs +bM® + cM* +dM? + e} (5.9)
where:
a=3(y+l)2’ po37 =277 9+
4 4 2
d=-6, e=4
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In passing, it is noted that through a different approach Kahane and Lees (Ref 5.21) have
obtained a correction term to ¢ of Eq 5.8 resulting in essentially the same c3 as that Eq 5.9.
Therefore, a consistent choice of Cp would be to adopt Donov’s series and Busemann’s series for
flow compression and expansion respectively.

In the analysis that follows, we remain to adopt Lighthill’s Piston Theory, Eq 5.6, in order to
simplify the present approach.

For unsteady flow applications, Eq 5.6 is recast into the form of pressure differential of the upper
and the lower wing surfaces, ie. AC, = Cy - Cp . and the piston velocity w/U,, is

represented by two terms, ie. w/U, = w, + w,, where w, denotes the thickness distribution

of the wing and w, the downwash. Thus, the total pressure differential AC» can be expressed
as:

ACr = ACp + AC, (5.10)

and up to the third-order term:

3 (n)
AC; = 7\42«—2 > ¢, M" (Aw,) (5.10a)
n=1
and:
4w, 3 =\ 2 1 3 |
AC, = T4 S me, M” (a%.)  + (w2 aw,® +4w)e, M (5.10b)
n=1
where:
(Awo )(n) = wob,,,n - wown .
(5.10¢)

w “4+w "
(. )7 = 2= R

For non lifting airfoil sections, where (wo ), = (wo )u. . Eq 5.10b reduces to the expression:
AC, = fjj—[ (cl +2¢,Mw, + 3¢, M*w.? )wl + (c3 Mz)wls ] (5.11)

Substituting Eq 5.6 into Eq 5.11 and dropping the higher order terms in w; yields the linear
amplitude version of Piston Theory as a special case, i.e.:

AC, = [’th— +2(+D)w, + (y+1)Mw? ]w, (5.12)
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We shall use the above expression to develop the Unified Lifting Surface Method.
53  Hypersonic Similarity for Thickness Effects

A classical Hypersonic Similarity (Ref 5.22) can be expressed as:

2
C, = Zx FKy) (5.13)

where:
2y

frn= [l + Z—Z-—I-K:Ir_T -1 (5.13a)

1
¥

is the universal function due to the Prandtl-Meyer expansion, and:

1
1y 1 +1
-2l — r—: 5
fn [( 2 ) + 2]. + 2 (5.13b)

is the universal function due to oblique shock waves, where X = Mé or Mr.

Clearly, Eq 5.13a is the basis of Lighthill’s Piston Theory and hence of Eq 5.5. Eq 5.13b was
established by Tsien (Ref 5.14) and Linnell (Ref 5.23). When Eq 5.13b is expanded up to the
third-order term, the coefficient c; corresponding to Eq 5.6 reads:

(y+1)

Cy = et 5.14

3 5 (5.14)

This is to say that the departure between Eqs 5.13a and 5.13b starts from the third-order term and
2

the difference of which amounts to Ac; = 3y -2-5 < 0, representing the difference in

96
rotationality due to shock wave.

It is desirable to extend the previous third-order theories into the hypersonic flow regime where
K 20(1). Close examination of them reveals that the C,’s of these third-order theories diverge

drastically as K increases toward the Newtonian limit (Fig 5.9).

Second-order theories, on the other hand, usually result in one half the value of Newtonian
pressure, whereas Cj, of Linear theory vanishes at the Newtonian limit.

It is clear that Piston Theory does not yield the correct limit in the low supersonic end, nor does
it approach the Newtonian limit in the hypersonic end. Fig 5.9 shows that Piston Theory has a
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limited valid range of In K between roughly say —1 to at most 0.5 (0.368 < X < 1.05), for a wedge
of semi-angle equal to 10°. '

Clearly, the status of the previous third-order theories warrants further establishment of one that
is uniformly valid and covers both the supersonic and hypersonic limits. In the present
development we have established such a uniformly valid solution by means of a strained
parameter technique in the unified supersonic-hypersonic domain. The resulting Cp’s are two
composite functions, one for the compression waves and the other for the expansion waves,
which can be generally recast into a pseudosimilar form as:

C
—T% = f.(K,7:61,65,¢3) (5.15)

provided that the coefficients ¢;, c; and c; could be suitably chosen from the appropriate third-
order theories.

5.4  Unified Supersonic/Hypersonic Lifting Surface Method of ZONA7U

The matrix equation for solving AC, on wing-like components of ZONA7U can be expressed
as:

w, = D, AC, (5.16)

where w; is the downwash i® wingbox due to structural oscillation {w,}=F,, F,, is expressed
in Eq 3.26. Dy is the normal velocity influence coefficients. [D;]1=[NIClyy, [NIClww is

expressed in Eq 3.51 and AC, is the unsteady pressure difference between the lower and upper
surface of the /™ wingbox.

It has been shown that in Ref 5.1 that a unified N/C matrix can be constructed by superposing a
“nonlinear” matrix E;; onto the matrix D;; based on the principle of amplitude perturbation, i.e.

w, =[D; +pu,; E; ]JAC, , (5.17)

The matrix E;; is “nonlinear” in the sense that it contains effects due to nonlinear functions in
ij

wing thickness 7 or flow incidence «,. These nonlinear effects include shock-induced

rotationality or local flow expansions.

There are a number of approaches that could provide the E; matrix. For example, a stripwise
solution could be provided by the Perturbed Euler Characteristic method (Euler-Pec method, Ref
5.2). However, the simplest and most expedient approach is to adopt the concept of Hayes-
Lighthill’s Piston theory. In so doing, it is required that E; be a diagonal matrix whose elements
is related to two nonlinear functions in w,:
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-1 - .
Eh’ - f(woa}’3M’K) (518)
= g(W,;7,M,K)
where w, is the local thickness function at the i wingbox, ¥ is the ratio of specific heat of gas

and K (=Mt) is Tsien’s hypersonic similarity parameter (Ref 5.14). The functions fand g are
uniformly-valid solutions in the unified supersonic-hypersonic domain for compression and
expansion surfaces, respectively. By means of strained coordinate technique (Ref 5.24), the
function fis derived by matching the Newtonian impact solution with then Donov-Linell series
for flow compression (Ref 5.19), and the function g with the Busemann-Lighthill series for flow

expansion (Ref 5.18). Hence, the parameter u; (Eq 5.17) is a local switching operator on E; for

suitable adaptation of function f or g on each panel. It should be noted that Eq 5.17 contains
piston theory as a special case, in which D; =0, g, =1 and E; reduces to:

E," = gw)= i’— +2(7+D)w, + M(y+D)w,’ (5.19)

As commented in Ref 5.1, Piston theory inherits two undesirable features. First, it is strictly one-
dimensional model which provides no upstream influence whatsoever. Second, its applicability
in Mach number range is ambiguous for it does not approach the Ackeret limit in the low
supersonic end, nor does it approach the Newtonian limit in the hypersonic end. By contrast, the
present unified solution contains both limits. In the Newtonian limit, where M approaches
infinity and y approaches unity simultaneously, E;; reduces, as expected, to:

E," = f(w,)=2w," and

1 (5.20)
Eii- = g(wo) = 0

The inadequacy of Piston Theory can be seen in the case of an oscillating flap.

Shock Wave

Fig 5.10 Oscillating Leading-Edge Flap os a Thin Wedge Airfoil: ¢=2°
Fig 5.10 shows an oscillating leading edge flap of thin wedge profile (¢ = 2) with a hinge line

located at the quarter chord. Fig 5.11 shows the magnitude and phase angle of the unsteady
pressure along the profile at M= 5.0 and k= 0.5. The pressure magnitude on the flap predicted
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by ZONA 51U is in good agreement with Euler-Pec solution. However, the phase angle of
ZONAS1U follows essentially that of the linear theory, which disagrees with the Euler-Pec
solution. This is expected in that the nonlinear functions fand g of Eq 5.18 only contribute to
self-influenced elements of E;;, an inherent feature of Piston theory where D;; = 0, it essentially
provides no phase change; hence, its prediction is inadequate for the present case.
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Fig 5.11 Unsteady Pressure Distribution for an Oscillating Leading Edge Flap with Hinge Line at
Quarter Chord: (M =2.4,%k=0.5,06=3°

5.5  AIC Matrix of ZONA7U for Hypersonic Wing-Body Configuration

The inclusion of the nonlinear matrix E; in the [NIC]ww matrix suggests that the total normal
velocity influence coefficient matrix for wing-body configuration in Eq 3.49a can be modified

as:
[NIC]BB [NIC]W‘B o _ FB
[[N]C]BW [IMIClow +[ 4 Eg]] {AC’p } B {Fw } (5.21)

Since solving ¢ and AC, in Eq 5.21 requires the matrix inversion of the modified NI/C, the
nonlinear matrix E; indeed gives a nonlinear relationship of AC, and the thickness effect. Also,

the procedures for A/C generation described in Sec 3 can be directly adopted for ZONA7U. This
leads to the AIC matrix of ZONA7U to be in the same form of that of ZONA7.
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6.0 SPLINE METHODS FOR SPLINE MATRIX GENERATION

Aeroelastic analysis, as an interdisciplinary problem, requires the coupling of the aerodynamic
and structural responses. In practice, the requirements to generate the discretized models of
these disciplines are subject to different engineering considerations. The grid of the discretized
aerodynamic model is usually placed on the external surface, whereas that of the structural
model is placed on the internal load-carry component. This gives rise to the data-transferred
problem between two computational grid systems. This would amount to the proper transferal of
the displacements computed in the structural grid to the aerodynamic grid and that of loads from
the aerodynamic grid to the structural grid. The development of a suitable methodology for
solving this type of data transferal problem is by no means a trivial task. In fact, such a
methodology should be further developed as the aerodynamic and/or structural methods advance.

ZAERO resolves this data transferal problem by mean of providing a spline matrix that relates or
interpolates the displacements at the structural finite element grid points to the control points of
aerodynamic boxes. This spline matrix is generated by a spline module in ZAERO that contains
four spline methods namely the beam spline method, infinite plate spline (IPS) method, thin-
plate spline (TPS) method and the rigid-body attachment method. These four methods jointly
assemble the total spline matrix G expressed in Eq 2.15, repeated below:

h=Gx
where h is the “interpolated” displacement vector at aerodynamic boxes, including the

translational displacements and their slopes with respect to x. Specifically, h is in the order of
K-set defined in Eq 3.60, repeated below:

,
.
.
.

{h}K—set =97 k:

where:
i represents the index of the /™ aerodynamic box

G is the total spline matrix relating h to x

x is the displacement vector defined at the structural finite element grid points
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and ( )' denotes the derivatives of ( ) with respect to (i—) , L is the reference length.

Usually, each structural finite element grid point has six degrees of freedom (d.o0.f.); namely 7,
T, and 7; for translational displacement as well as Ry, R, and R; for rotational displacement
along x, y and z directions. Thus, for » grid points there are 6 x » degrees of freedom. These 6 x
n degrees of freedom are defined as G-set d.o.f. that can be expressed as:

N

B I R B

{x}G-set =311 L &

(.

e

.

where i représents the index of the /* structural finite element grid point.

Once the spline matrix G is generated, the force transferal from the aerodynamic boxes to the
structural finite element grid points (from K-sef to G-ser) can be achieved by the transpose of
matrix G. This has been shown in Eq 2.16, repeated below:

{Fa}G—sel = [G]T {Fh }K—set
In this section, we will discuss the theoretical derivation of:

Infinite Plate Spline (IPS) method
Thin-Plate Spline (TPS) method

Beam Spline method .
Rigid-Body Attachment (RBA) method
Matrix Assembly of the Total Spline Matrix

6.1  The Infinite Plate Spline (IPS) Method

The IPS method was first proposed by Harder and Desmarais (Ref 6.1), which was a significant
improvement over the two-dimensional (2D) interpolation method of Rodden (Ref 6.2). This
development was motivated by the advent of lifting surface methods in aerodynamics at that
time, which required a 2D interpolation method such as IPS. The 2D surface is defined as the
plane of the lifting surface. Therefore, IPS is ideally suited for displacements and forces
transferal of wing-like components. Today, IPS is one of the more popular method of
interpolation used in aerospace industry.
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Consider a set of N discrete structural grid points (x;, ), for i =1, 2, ..., N lying within a 2D
domain with Cartesian coordinates x and y. Each grid point defines the vertical position
coordinate of the “deformed” surface. IPS solves the partial differential equation of equilibrium
for an infinite plate with uniform thickness. The deformation of the infinite plate satisfies the
given deflection wi(x;, y;) at the N structural grid points. Once the partial differential equation is
solved, the deflection at other points, for instance the aerodynamic points, on the plate can be
determined.

The governing equation of an infinite plate with bending stiffness reads:
DV*W =g¢q 6.1)

where W is the plate deflection, D is the plate bending rigidity, and g is the distributed load on
the plate. Introducing polar coordinates, x = rcos@, y =rsind, so that V* in polar
coordinates is given by:

AVARS ld ,-_d_ l.‘f_(ri’f’_) (6.2)
rdr dr| rdr\  dr ‘

and considering the deflection due to a point load P at the origin of the coordinate system, a
solution of Eq 6.1 can be written as:

W(r)=A+ Br* + (1 PD) r’inr? (6.3)

67

where A4 and B are undetermined coefficients.

For N point loads at the given location (x;, ), for i =1, 2, ..., N in the 2D space, the total
deflection can be obtained by superimposing the fundamental solution of Eq 7.1 such that:

N
W)= (4+B,rF + Friing?) (6.4)

i=}

where:
A, Biand F, = —6——— are undetermined coefficients,
16z D
and:

rP=(x-x) + (y-y,)

For the purpose of determining these undetermined coefficients one needs to use certain
information about the solution. Harder and Desmarais showed that by expanding Eq 6.4 for
large values of 7, one obtains terms of order 72, r, 1, 1/r, etc., along with terms of order % In#r
In7, In /2 etc.:
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N N : N
W(r,0) =r’lnr* Y F, +r* Y. B, - 2rinr® ) (x,cos6+y,sin6)F,

i=1 i=1 i=]

¥ ~ 6.5)
- 2r Y (x,cos0+y,sin0)(F,+B,) + Inr* Y (x' + ") F, + ...
_ i=1 i=1
For removing the singularity at » =0, coefficients of the terms of order 7, 7 In 7 and
r In / must vanish. This gives:
N
MF =0 (6.6)
i=1 .
N
Zx,. F =0 (6.7)
i=l
N
d¥F=0 (6.8)
i=1
N
ZB,. =0 6.9)

Here Eq 6.6 can be recognized as the discrete force equilibrium equation, which eliminates terms
of order 7 In 7. Egs 6.7 and 6.8 are discrete moment equilibrium equations and eliminate terms
of order r In 7. Finally, Eq 6.9, the physical significance of which is not clear, serves to
eliminate terms of order 7°.

Egs 6.6 through 6.9 result in linear deflection at infinity. For extrapolation, this implies that
linear deflection of the acrodynamic points occurs only if they are located far from the domain of

the structural grid points. A solution to the general spline problem, formed by superimposing
solutions of Eq 6.1, is given by:

' N
wx,))=a, +ax+ay+ ZK,(x,y)F, ' (6.10)
i=1

where:
Ki('x:y) = riz ln riz

riz = (-x"xi)z + (.V"yi)z

where a,, a; and a; are unknowns given by:
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a, = i [4 + B (2 +12) (6.11)

i=l

N

a =-2Y Bx (6.12)
i=1
N

a, =-2) By, (6.13)

=]

Note that the N + 3 unknowns in Eq 6.10 can be determined from apphcatlon of side conditions
found in Eqs 6.6 — 6.8 along with setting the deflection at the i® point to its known value W,.
Viz.,

N
W,=a, +ax +ayy, + 2K F, fori=1,2,...,N (6.14)
J=1

N
i

y ’tjzln’ijz
(6.15)
r = (x-x,)? + (- y,)

is the square of the distance between known points (x;, ;) and (x;, ;).

Eq 6.14 and the side conditions found in Eq 6.6 — 6.8 can now be expressed in matrix form as:

{W} = [R]}{a} + [K;]{F} (6.16)
and: |
RI"{F} =0 (6.17)
where:
W, R

Wy Fy
(6.18)
a, 1 X 34\
X Yy
{a} - al > [R] = : :2 :2
% 1 XN In



Thus, the deflection W}, fori=1, 2, ..., N can be determined using Eqs 6.16 and 6.17 along with
the above definitions. Combining Eqs 6.16 and 6.17 gives:

—

0) o 0 0 1 - 1 (a, )
0 0 0 0 x o x4 a,
0 0 0 0 xn Yn 2,
imp = |1 x » 0 - Ky| {At = [Cl[P] (6.19)
W, 1 x y Ky oo Ky I
(WN |1 xy oy K o 0§ (B

The interpolation to any point in the 2D plane is then achieved by evaluating w(x, y) from Eq
6.10 at the desired points. Thus, for a given acrodynamic point (xi, i), its displacement is:

4 O 1
0
: 0
h(xk:yk) = (1’ xk: yk’ Kk,la Kk,Za eeey Kk,n) [C]_l 1 w.l - (620)
W,
\w”;
and its streamwise slopes is:
¢ 0 N
0
0
h'(x.,y.) = (0,-1,0, DK, ,, DX, ,, ..., DK, ,) [C]’l Sw b (6.21)
W,
\w”‘
where:
oK.
DK,, = - L= -2(x, - xk)(l +Inn iz)
Ox, ’

Eqs 6.20 and 6.21 can be rewritten as:
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h(x,,y,) = [s,] 3‘ (6.22)

and:

h'(x,., ) = [Ds] 5‘ (6.23)

wn

where [s,] and [Ds,] are resulted from the matrix multiplications in Eqs 6.22 and 6.23,
respectively, but with the first three columns of [C]™ being removed.

The solutions of h(x,,y,) and h'(x,,y,) exist only if the matrix C is non-singular. The
singularity in matrix C occurs when:

e all structural grid points are aligned along a line. This is obvious since a line fails to define a
plane.

e two or more than two structural grid points have the same x and y location.

To perform the IPS method, it is required that all structural grid points and aerodynamic points
are located on the same plane. This plane is called “spline plane”. Normally, the plane of the
lifting surface (or the mean plane of the wing-like component) is selected as the spline plane.
However, for structural grid points located in 3D space, these structural grid points may not be
necessarily located on the plane. In this case, it is required to project the structural grid points
onto the spline plane along the normal direction of the spline plane. This can be done by
transforming the structural grid point locations to a local coordinates whose x-y plane coincide
with the spline plane.

Singularity in matrix C appears in case two structural grid points shear the same x and y
locations on their projected position, even if their original positions in the 3D space are not the
same. Therefore, in this kind of situation, one of the two grid points must be excluded from the
selection of the structural grid points.

Another important concept needed to be addressed here is that the IPS method is a scalar
operator. This is to say that for a given set of normal displacements at structural grid points the
IPS method results the displacements at the aerodynamic points only along the normal direction
of the spline plane. For instance, the deflection # in Eq 6.1 represents the normal displacement
at structural grid point. Therefore, the deflection h in Eq 6.20 at aerodynamic point is also the
normal displacement. However, for the deflection along other directions one finds out that the
IPS method can be applied in the same way as that of the normal displacements. Let u» be the
streamwise deflections and v be the lateral deflections, Eq 6.1 can be rewritten as:
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DViu=gqg (6.24)
DV*v =g (6.25)

This time, D is not the plate bending rigidity but represents some in-plane flexural rigidity.
Solving Egs 6.24 and 6.25 results the solutions that are identical to Eqs 6.22 and 6.23 but with W
replaced by u for streamwise displacement and by v for lateral displacement. This also indicates
that for 6 d.o.f. at each structural finite element grid points, namely, 73, T2, T3 of translational
displacements and Ry, R,, R; for rotational displacements, Eqs 6.22 and 6.23 can be generalized
as:

(1, ] [ [s,] O 0 00 0] ({T})

h, 0 [s] O 00 0f]{x}

h 0 0 s 0 0

‘th "\ [Ds] 0 [5] g 0 0 ’{{11;3,};’ (6.26)
7, 0 [Ds,] O 0 0 0| |{R,)

#), | o o bs,d 00 o) (R}

The zero matrices associated with {R,}, {R,} and {R,} in the right hand side of Eq 6.26 are
resulted from the IPS formulation which does not involve the structural rotational displacements.

Applying Eq 6.26 for M aerodynamic points by letting the index k be k=1,2, ..., Myields:
{h} = [Gps1{x} (6.27)

where:

M =19 =14 k=1,2,...M ' (6.28)
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({1} ]
{I,}
, {T,}
= . [ 6.29
{x} (R} (6.29)
{R,}
L {Rs} )
and:
[ [, ] 0 0 00 0]
0 f[s,] 0 000
1o 0 [s,] 000 _
[Gps] = (Ds,] 0 6 000 k=1,2,...M (6.30)
0 [Ds,] 0 00O
0 0 [Ds,] 0 0 O]

Thus, [Gps]represents an IPS method generated spline matrix that interpolates the

displacements of the 6 d.o.f. at N structural grid points to the displacements along x, y, z
directions as well as their streamwise slopes at M aerodynamic points.

Finally, some important remarks about the IPS method are summarized below:

e The spline matrix becomes singular when two or more than two structural grid points shear
the same x and y location of their projection position on the spline plane.
The spline matrix is singular if all structural grid points are aligned along a line.
Linear extrapolation occurs only if the aerodynamic points are far from the domain of the
structural points. Otherwise, distortions or oscillations may appear in the extrapolated
regions.

e The IPS method is a scalar operator. For a given set of displacements along one direction,
the IPS method does not recover displacements along other directions.

6.2  The Thin-Plate Spline (TPS) Method

The TPS method (Ref 6.3) is a generalization of the IPS method by incorporating some three-
dimensional aspects. TPS provides a means to characterize an irregular surface by using
functions that minimize an energy functional. The derivation is entirely analogous with the IPS
method with the addition of the third coordinate. Eq 6.4 becomes:

N
Wxy,2) =Y (4,+B,1* + Frfnr?) (6.31)

i=]

where:
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nP = (x-x) + (-p,) + (z-2,)

The boundary conditions at infinity are similar to these of IPS but with the addition moments in
the third axis:

th = ZF; = inF; = Z.V1 F, = ZziFt (6.32)

Expanding Eq 6.31 for large 7, terms of order * In 7%, #* and r In #* can be eliminated by applying
the boundary conditions expressed in Eq 6.32. This leads to:

Y v
wx,y,z)=a, +a,x+a,y+a,z +ZK,(x,y,z)F, (6.33)
i=1
where:
K,(xy)=r'lnr}

In order to solve the unknown coefficients, one can introduce a matrix notation such that Eqs
6.32 and 6.33 become:

{W} = [R]{a} + [K,]{F}

(6.34)
[R]" {F} = 0
where:
K, =rInr/’
and:
o= &%)+ 0 -0) + (-2)
The matrix R is:
1 X N z,
[R] = IR A R (6.35)
I x I 2N
Wy a, F,
{W} = Wz S Z; L om=i (6.36)
Wy a; By
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For a given coordinates of the NV structural grid points, Eq 3.34 becomes:

O] _ [0 R |[{@}] _ ][
{{W}} ) [[R] [K',.,]]{{F}} [C]{{F}} (6.37)

The interpolation to any point in the 3D space is then achieved by evaluating w(x, y, z) of Eq
6.33 at the desired point. Thus, for a given aerodynamic point (x,, y,, 2, ), its displacement is:

0
h(xp, yi,z) = (L x, Vs 2 Ky Kk,za ooy Kk,n) [C]—l {{{“3}} (6.38)

and its streamwise slopes is:

0
b'(x, %,2) = (0,-1,0,0, DK,,, DK,,, ..., DK,,) [C]” {{{VV}}} (6.39)
where
oK
DK,, = ——é—i = -—2(x, - xk)(l + ]nrk,,z)
x

k

Eqgs 6.38 and 6.39 can be rewritten as:

b(x, ¥y, 2,) = s, ] {W} (6.40)

and:
(%, Yo 2) = [Ds,] {W} (6.41)

where [s,] and [Ds,] are resulted from the matrix multiplication in Egs 6.38 and 6.39,
respectively, but with the first four columns of {C]™ being removed.

Unlike the IPS method, TPS does not require a spline plane. Therefore, TPS can be considered
as a 3D spline method that performs the interpolation based on a set of structural points located
in a 3D space.

Similar to IPS, the TPS method has several restrictions:

e The matrix [C] in Eq 6.37 is singular if two structural grid points have the same x, y and z
locations.

o The matrix [C] is singular if all structural grid points are located on the same plane. In this
case, the sub-matrix [R] becomes singular that leads to a singular matrix of [C].
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TPS is also a scalar operator. Similar to IPS, Eq 6.41 can be generalized into a spline matrix
such that:

{h} = [Gps]{x} (6.42)

where {h} and {x}are the same as Eqs 6.28 and 6.29, respectively, and [Grps] has the same form
as Eq 6.30.

Since there is no requirement of spline plane, for interpolation of displacements at 3D structural
grid points, TPS outperforms the IPS method. However, if all structural grid points are on the
same plane, the TPS method breaks down. In theory, for this kind of situation the formulation of
TPS can be reduced to that of IPS. But such a reduction is not straight forward. Therefore, in
practice, the IPS method should not be treated as a special case of TPS. Thus, for all structural
grid point on the same plane, the use of that IPS method is suggested.

6.3  The Beam Spline Method

It is often that a high aspect ratio wing structure is modeled by a beam-type finite elements along
the elastic axis of the wing, or a body by beam-type finite elements along the center line of the
body. On the other hand, the aerodynamic boxes of the wing-like and body-like components in
the aerodynamic model are generally located in a 3D space. The Beam Spline Method is
designed to specially handle this kind of spline problem.

The Beam Spline Method solves the partial differential equation of equilibrium for an infinite
beam with uniform bending and torsion stiffness. For bending deflections, it satisfies the given
displacements and slopes at the N structural grid points. For torsion, it satisfies the given twists.
The N structural grid points are assumed to be located along a line called the “spline axis™. In
the present formulation of the Beam Spline Method, the spline axis is defined as the y axis of a
user specified local coordinate system.

After the unknowns of the infinite beam equation are determined, the displacements and slopes
at the aerodynamic points can be obtained by rigid connections between the beam and the
aerodynamic points (see Fig 6.1). To derive the solution of the infinite beam equation, it is
required first to transform all structural grid points and aerodynamic points into the spline axis
coordinate system. This can be done by computing a transformation matrix [Ts] such that:

!

x x
yir = [Llyy (6:43)
z' z
where:
x', ' and z' are a local coordinate system whose y' axis is the spline line
and:
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x, y and z are the basic coordinate system whose x axis is parallel to the streamwise
direction.

z
y
Z°  Structur
Y’ (spline line)
x
L i,)
i > Rigid Bar
Infinite Corinection
Beam \
X" Aerodynamic Point
at (xk s Yk 3 zk
(a)
z
y 9
z
A
x
W(y;")
' Aerodynamic Point
/ a0 oo %
x?
Rigid Bar
Corinection

y’ (spline line)

Infinite
Beam

(b)

Fig 6.1 Spline Axis Coordinate System (a) Spline Axis Along the Elastic Axis of Wing-Like
Component (b) Spline Axis Along the Center Line of Body-Like Component
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Bending Stiffness About the x’ Axis
The partial equation of an infinite beam with constant bending stiffness about x” axis reads: |

g8 _ .M
dy4 q dyl

(6.44)
where:

W is the beam deflection parallel to the z' axis

E I represents the bending stiffness

g is a distributed transverse load

and:
M is a distributed moment

For N structural grid points located along the beam, the solution is found by superimposing the
fundamental solutions:

v M-y BT
WV = + ‘4 - + 6.45
O)=a, +ay Z}:{ AE] GE] (6.45)
n_dW _ 5 Mly-y| | B0y -¥i
6,() = v a, + }_}( SET + Bl (6.46)

Applying Eqs 6.45 and 6.46 for the given W and 6, at N structural grid points and imposing the
boundary condition at infinity for linear function of W '

>P=0 (6.47)
Y (¥ P + M) =0 (6.48)
gives:‘
{0} 0] R" R | {a} {a}
{Whe = | R 4, 4y |{{®} =I[C]4 (R} (6.49)
{6,} R, 4, 4, || M} {M}
where:
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X I
Y

o
Wy=3"2b, =121, (@)= {“}
: : a,
WN gxw
(R M,
P M
P =47, =47
Py M,y
1 1 1 00 0
n ¥y Y 11 1
3 3 3
T P m
_ 1 "71123 77223 771v23
Ay, = — . .
12 E] : :
“Uwa ’72N3 . 77NN3
UM "77212 ‘771v12
A = 1 77122 77222 —77N22
a = =7 . .
4 E] :
_771N2 7721\/2 77NN2
[ Ty — 7y /i
A, = 1 2 77.22 = M2
2E] :
v T MTnw
and:
= -y

For a given aerodynamic point (x,, y,, z,) exactly located at the beam so that x = zx = 0, the

interpolated displacement W(0, y,,0) can be obtained by evaluating W(y') of Eq 6.45 at the
desired point:
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|77k1|3 I”k2|3 ) I’]wr T |77k1|
WO, 7,0) = [ Yo e RE CDRE T 4E

0}
_Tha |77k2| N |77w| } [y’ {

N W}
4 EI 4EI @)

AW 0, ,,0) = [ | Malmal almal | wlmal el
B,

]l %
T2E T 2E ) [cr* (W
{6}

2 "2EI’ 2EI° " 2EI’ 2EI °

| . ©
_sign(ng) . __s_ngnm][cr‘ W
2E1 ° ° 2E] {6.}

k

dzw(o Yx»>0) =(0 0 |ﬂ“| |ﬂkzl lnkNl _Sign(ﬂkx)

Eqs 6.50, 6.51 and 6.52 can be simplified and rewritten as:

W(0,y;,0) = [sk R, ] {gvi}

_ {W}
'('1"‘;‘(0 s Yio 0) [Dsk DR, ]{{gx}}

d’w W}
o &0 = Lo mk]{{gx}}

where:

4EI ° 4EI ° ° 4EI ° 2EI

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

[s. R ] [Ds, DR, ], [Cs, CR,] areresulted from the matrix multiplications
in Bqs 6.50, 6.51 and 6.52, respectively, but with the first two columns of [C]” being removed.

Bending Stiffness About the z’ Axis

The partial equation of an infinite beam with constant bending stiffness about the z' axis reads:
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Ei=¢-22 (6.56)

where U is the beam deflection parallel to the x' axis.

The equivalence of Eq 6.56 and Eq 6.44 suggests that the solution of Eq 6.44 can be adopted for
Eq 6.56. Thus, Eqs 6.53, 6.54 and 6.55 can be rewritten as the solutions for U:

U
U(0, y;,0) = [sk Rk]{gﬁj‘} (6.57)
dU o oy = {U}
57 00 = [Ds, DRk]{ {92}} (6.58)
d’U o oy - {0}
W(O,yk,o) = [Cs, CRk]{{gz}} (6.59)

Torsion Stiffness About the vy’ Axis

The equation of infinite beam with constant torsion stiffness reads:

(a6,
GJ @ =-M, (6.60)
where:
6, is the twist about y’

M is a distributed torque.

For N structural grid points located along the beam, the solution of Eq 6.60 is:

n |yi-v'|  |»-¥] |3 -] a
gy(y) - [1’ 2GJ > ZGJ 9 *ves 2GJ {My-} (661)

The equilibrium condition requires:
dM, =0 (6.62)

Applying Eq 6.61 for the twists at N structural grid points and imposing the equilibrium
condition yield:
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[0 1 1 e 1]
Ly il
{O}z. 2GJ ZGJ{"}
{6,} : M, }
S W I L 65
2GJ  2GJ |

@ {on)
= O )

For a given aerodynamic point (0, y;,0) at the beam, the interpolated twist is:

6,00,5,0) = [T,1{6,} (6.64)

where:
[T, ] is resulted from the combination of Eq 6.61 and Eq 6.63.

Displacement of Aerodynamic Point in 3D Space

The displacement of a given aerodynamic point (x;, ¥,z ) in 3D space is obtained by assuming
a rigid bar connecting the point and the beam. This leads to:

U

vt =[Gy, Ry, D5y, DR, T, 3, 7) | ) (6.65)

-
v
]

L = [6,(Ds,, DR, T,) | &} (6.66)
dx; k

A

4 = [G,(Ds,,DR,,Cs,,CR,,x.,2,) ] {x} (6.67)
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dz;
120 - [6,0s,. DR, T,)] x} (6.68)
dz, t
aw.
CaSH
where:
[ {u} )
{v}
noo J
{x} = 0. (6.69)
{6,}
{6} )
and:

G1, G2, G; and G4 can be derived from Egs 6.53 to 6.55, Eqs 6.57 to 6.59, and 6.60 as
well as with a rigid bar connecting the aerodynamic point (x;, ;, z; ) to the beam.

Transformation from Spline Axis Coordinate to Basic Coordinates
Eqgs 6.65 to 6.69 are derived in the spline axis coordinates. The transformation matrix [Ts]
relating the spline axis coordinates to the basic coordinates is defined in Eq 6.43. Therefore, Eq

6.69 can be transformed to T3, T5, T3 and Ry, R;, R; of the given displacements defined in the
basic coordinates by:

. [l o
(x} = [ . [Ts]] x) (6.70)

where {x} is expressed in Eq 6.29.

The interpolated displacement », v and w can be transformed to Ay, 4y and 4, by:

h, u
hot = [T] {v (6.71)
h )y Wik

Substituting Eqgs 6.70 and 6.71 into Eq 6.65 yields:
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>

i T] 0
it = mren| 0 e 67)

zJ)k

The streamwise slopes can be derived from:

oo O e Y o
* Ox ox' ox & &x o' éx
oh oh, &x' Oh, 3y’ Oh, &
h;=_Y_=_{-?f_+ y'i+ {_Qz_'_ (6.73)
oy o'y & oy ooy
-

2z o o & & b

Substituting Eqs 6.66 to 6.69 and combining the resultant equation with Eq 6.72 yield a spline
matrix relating the 6 d.o.f. displacements at NV structural grid points. Repeating this process for
M aerodynamic points by letting the index & vary from 1 to M gives:

{h} = [Gpun ] {X} (6.74)

where:
{h} and {x} are defined in Eqs 6.28 and 6.29, respectively,

and:
[Gpem] is@ 6 x M spline matrix generated by the beam spline method.

Some important remarks about the Beam Spline Method are discussed as follows:

e One of the basic assumptions of the Beam Spline Method is that all structural grid points are
located along the spline axis. Errors may be introduced if some of the grid points are off the
axis.

o Similar to the IPS and TPS methods, the spline matrix becomes singular if two structural grid
points are coincided at their projected position at the spline axis.

e Linear extrapolation occurs only if the aerodynamic points are far away from the domain of
the structural points. Otherwise, distortions or oscillations may appear in the extrapolation
regions.

6.4  The Rigid-Body Attachment (RBA) Method

The Rigid-Body Attachment (RBA) method is developed for the cases where no structural model
exists for a particular aerodynamic component. For example, an underwing store may be
modeled as a point mass in the structural finite element model, but its surface may be represented
by a detailed aerodynamic panel model. Since no information of the structural connectivity
between the point mass and the store surface is given, it is assumed that all aerodynamic points
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are aftached to the point mass by a rigid body. For a given aerodynamic point located at xy, yx,
2y, its displacements can be expressed as:

hy 1 00 0 (ze-2) -(-y)
hyy =101 0 —(z.-2) 0 (x =x) |1 > (6.75)
hz k 0 01 (yk-y) *('xk-x) 0

R B B B

and its streamwise slopes are:

K, 00000 O
mt ={00000 -1[4 31} (6.76)
B, 000071 0

SN NN

J

where x, y and z are the location of the structural grid point to which the aerodynamic points are
attached.

Applying Eqs 6.75 and 6.76 for M aerodynamic points by letting the index kbe k=1,2, ..., M
yields:

{h} = [Ggpa ] {x} (6.77)

where:
{h} and {x} are defined in Eqs 6.28 and 6.29, respectively,

and:
[Ggga] is a 6 x M by 6 spline matrix generated by the Rigid-Body Attachment method.

Since there is no matrix inversion involved in the Rigid-Body Attachment method, [Ggg, ]
cannot be singular. Unsatisfactory results of the Rigid-Body Attachment method is usually
caused by the over-simplified finite element model. For instance, using the transposed of
[Ggga] for the force transferal from aerodynamic points to the structural point implies that the
entire aerodynamic forces on the aerodynamic component are lumped at a single structural point.
This will create a highly concentrated load on the structure which may not be realistic. To avoid
this kind of problem, it is suggested to refine the structural finite element model by introducing
more grid points and using other spline methods such as TPS.
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6.5  Matrix Assembly of the Total Spline Matrix

The generation of the total spline matrix that relates the displacements at the structural G-set
d.of to the aerodynamic K-set d.o.f. is performed on a component-by-component basis. The
selection of the spline methods depends on the type of the component in the aerodynamic model
(i.e. wing-like or body-like components) and the type of elements (beam or plate element) in the
structural finite element model. Within each component, the use of several splines is also
allowed. For example, 2 model may use the beam spline method for the inboard section, the TPS
method for the outboard section and the IPS method for the aileron of a wing-like component.
Separation into sub-regions of a component allows discontinuous slopes (e.g. along the wing-
aileron hingeline) and discontinuous displacements (e.g. along the inboard and outboard edges of
ailerons). Therefore, the spline matrices generated by different spline methods on different sub-
regions are the sub-matrices of the total spline matrix. Eq 6.78 shows an example of such sub-
matrix arrangement:

_[prs] 0 0

b} = o [GEPS] 0 ) .(6.78)
[(;'IPS] e 0 e 0
0 0 -+ [Ggeal |

The degrees of freedom in {h} and {x} are grouped based on the aecrodynamic and structural
points, respectively, involved in each spline. Therefore, it is required to rearrange the rows and
columns of the total spline matrix in Eq 6.78 according to the K-set and G-set degrees of
freedom of the acrodynamic model and structural finite element model, respectively.

Finally, it should be noted that some of the degrees of freedom in the structural finite element
model could be specified in local coordinate systems. It is these coordinate systems that define
the displacement vectors computed by the structural finite element method. Therefore, a final
transformation of {x} for these degrees of freedom is required. Let [Ty} be a transformation
matrix that relates the local to the basic coordinate systems, then the spline matrix becomes the
total such that:

s = (6] Do | | 679

where:

[6] = [G] [T.]
X is the structural displacements defined

x = L]
and:
[G] is the total spline matrix for structural displacement defined in basic coordinates.
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7.0 FLUTTER SOLUTION TECHNIQUES

ZAERO provides flutter solutions for aeroelastic analysis. Several flutter methods are included
in ZAERO. In this section, we will discuss the solution technique of various flutter methods.
These methods include:

e the K-method
e the P-K method
o the g-method

Technical merits and theoretical validity of each method will also be discussed.
In Sec 2, we have derived the flutter matrix equation in the Laplace domain (Eq 2.9) in terms of

the generalized mass matrix, M, generalized stiffness matrix K, and the generalized aerodynamic
force matrix Q. Eq 2.9 reads, repeated below:

[s2M+K-qu(ST/I-'-)]q=O (7.1)
Introducing a non-dimensional Laplace parameter p defined in Eq 2.23, repeated below:

p =Tk = Gk + i) (7.2)

where £ is the reduced frequency defined in Eq 2.13, repeated below:

p=2L
vV

@ 1s the harmonic oscillatory frequency

L is the reference length

14 is the velocity of undisturbed flow

then Eq 7.1 becomes:

[(%] M +K-qu(p)]q=o D

Eq 7.3 is the so-called p-method equation. It is the desired equation for flutter analysis since its
solution can provide the true damping of the aeroelastic system. However, because most of the
unsteady aerodynamic methods, including ZONA6, ZONA7, ZTAIC and ZONA7U, are
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formulation in the reduced frequency domain (k¥ domain) by assuming simple harmonic motion,
the unsteady aerodynamic forces generated by these methods are strictly valid only at zero-
damping condition. This implies that using the reduced-frequency domain unsteady
aerodynamic forces (k-domain Q(ik)) in the flutter equation, the solution is valid only at the
stability boundary (the on-set of flutter). Therefore, for reliable damping prediction in the
complete velocity range of interest, approximation technique for flutter solution are required.

7.1 The K-Method

- The basic equation for flutter analysis by the K-method is expressed in Eq 2.22, repeated below:
[-0’M + (1 +ig,)K - g, Qik)]qg = 0 (7.4)

Eq 7.4 is obtained by replacing p by ik in Eq 7.3, where ig; is the added artificial complex
structural damping that is proportional to the stiffness.

The introduction of ig, was first proposed by Theodorsen (Ref 7.1) for the purpose of sustaining
the assumed harmonic motion. Since the dynamic pressure g, can be written as:

1 1 (oLY
9o = —2'PV2 = '2-,0[—,(—) (7.5)

where p is the air density.

The K-method equation can be obtained by substituting Eq 7.5 into 7.4 and dividing the resultant
equation by @?:

‘ 2
[M + f’-(-L—) Q(ik) - ﬂK]q =0 | (7.6)
2\ & |
where:
1]

is the complex eigenvalue of Eq 7.6.
If rigid body modes exist, Eq 7.6 cannot be solved directly since it contains some trivial solutions

associated with the rigid body modes. Therefore, it is necessary to eliminate these trivial
solutions by partitioning Eq 7.6 into rigid body and elastic modes:

2
5P R
0 M, 27 \k Q, Q 0 K, q,
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where the subscripts 7 and / denote the rigid body modes and the elastic modes, respectively.

Since:
{0,} =-M," M, {q,}

Eq 7.7 can be reduced to:
[[“ﬁlr Mn’—l -M—rl + _n ]-2[K,11{q,} =0 (7.8)
where:
— 1 (LY
M, =—p|—
ir Z'D(k) er
— 1 (LY
M =M_+—p|—
I 1 zp(kj Qﬂ'
— 1 (LY
M, = 5,0(7(‘) Q,

— 1 (LY
M, =M, + EP[’;) Qy

To solve for the eigenvalue A , it is required to perform the unsteady aerodynamic computations
at several given reduced frequencies. These reduced frequencies are defined here as the
“reduced frequency list”. Q(ik) are generated at a given Mach number of interest for each
reduced frequency. For a given air density p, the eigenvalue of Eq 7.6 in terms of A’s are
solved in the complete reduced frequency list. For n structural modes, there are » eigenvalues
corresponding to n modes at each reduced frequency. The flutter frequency @, , the airspeed V7,
and artificial damping g; are given by:

1

“ = TR

g, = o Im(4) (7.9)
w; L

V=t

Fig 7.1 depicts a typical K-method results of the AGARD 445.6 wing (Ref 7.2) with 4 structural
modes and 15 set of Q(ik) ranging from k£ = 0.001 to k£ = 0.5 computed by ZONA6. The K-
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method is performed at a given Mach number and presented in terms of velocity vs. frequency
diagram (V-f diagram) and velocity vs. damping diagram (V-g diagram).
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0O 52- § 50-
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0.6 0= T T T T
0] 400 800 1200 1600 2000 o 400 800 1200 1600 2000

Velocity (ft/s) Velocity (ft/s)
Fig 7.1 AGARD 445.6 K-Method Flutter Results (ZONAG6), M = 0.9, p=0.000193 slug/ft’

The V-g diagram shows that the damping of mode 2 crosses the zero damping axis at V¢ =
1000/sec indicating a flutter boundary of the wing structure. The V-f diagram of Fig 7.1 clearly
depicts the numerical procedure of the K-method. At each reduced frequency, the flutter
frequencies of all structural modes are located along a radial line that starts from the origin. The
K-method solves the eigenvalues of the flutter equation, usually from the highest to the lowest
frequencies in the reduced frequency list. This will give their corresponding flutter velocities
generally from the low speeds to high speeds.

Since the K-method’s numerical procedure requires only a straightforward complex eigenvalue
analysis of each reduced frequency, its solution technique is efficient and robust. However,
several drawbacks discussed below make the K-method a less attractive method for flutter
analysis.

o The solution is valid only at g, =0. Other non-zero damping values are artificial and may not
have significant physical meaning.

e The frequencies and velocities are computed at a given pair of Mach number and air density.
This implies that the flutter boundary computed by the K-method generally is not a “matched
point” solution in that the flutter velocity, ¥; # M a,, . The matched point solution can be
achieved only by performing the flutter analysis at various air densities iteratively until the
condition of ¥; = M a,, is satisfied.

e Sometimes the frequency and damping values “loop” around themselves and yield multi-
value frequency and damping as a function of velocity. This gives difficulty in tracting the
eigenvalue in the reduced frequency list.

e The term -11; involved in Eq 7.6 indicates that the K-method cannot generate flutter solution

at k= 0. This is the reason why the K-method excludes the rigid body modes from its flutter

121




equation. The failure at £ = 0 also implies that the K-method cannot predict the divergence
speed instability; an important aeroelastic instability problem.

7.2  The P-K Method
Since its applicability for flutter method analysis was first proposed by Irwin and Guyett (Ref
7.3) in 1965, the P-K method has been widely adopted by aeroelasticians as the primary tool for

finding flutter solutions. Hassig (Ref 7.4) has given a detailed description of the superiority of
the P-K method over the K-method. In Ref 7.4, the equation of the P-K method reads:

2
[(%)M PP+ K- -;- pV? Q(ik)} {q}=0 (7.10)
For simplicity, Eq 7.10 excludes the structural modal damping matrix, but it can be easily

included. p is the non-dimensional Laplace parameter and can be expressed as:

p=g+ik | (7.11)

y is the transient decay rate coefficient.

The P-K method is an approximate method of finding a rate-of-decay of type solution. It is a
mathematically inconsistent formulation since the eigenvalues p is expressed as damped
sinusoidal motion while the Q(ik) term is obtained based on the undamped simple harmonic
motion. However, it is generally believed that the P-K method gives a good approximation of
the p-method.

Rodden (Ref 7.5) modified Hassig’s P-K method equation by adding an aerodynamic damping
matrix into Eq 7.10. The modified P-K method equation reads:

144 1 ! 1
[—I:;Mp’ + K —EpV’QTp—EpV’QR]{q} =0 (7.12)

where:
QF and Q' are the real part and imaginary part of Q(ik), i.e.:

Q(ik) = QF +iQ' (7.13)

By substituting p = g + ik into the third term of Eq 7.12, this equation can be rewritten as:
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2 1 .
[(%—)Mp +x -2 o7 Lg - 2o e i - (7.14)

By comparing Eq 7.14 to Eq 7.10, it is clearly seen that the extra term:

1 Q'
- = pV? =
ZP g

is the added aerodynamic damping matrix. Eq 7.12 is solved at several given values of V" and p,
for complex roots p associated with modes of interest. This is accomplished by an iterative
procedure that matches the reduced frequency & to the imaginary part of p for every structural
mode. This iterative procedure is called the reduced frequency “lining-up” process (Ref 3.3)
which requires the repeated interpolation of Q(ik) from these of the reduced frequency list.

Fig 7.2 shows the P-X solutions of the AGARD 445.6 wing described in Sec 7.1 at six given
velocities from 700 to 1200 ft/sec with intervals of 100 ft/sec. The damping and frequency
values at each given velocity are presented in the V-g and V-f diagrams in Fig 7.2.
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Fig 7.2 AGARD 445.6 P-K Method Flutter Results (ZONA6), M = 0.9, p=0.000193 slug/ft’

Comparing Fig 7.2 to Fig 7.1, it can be seen that the P-K method yields “well-behaved” damping
and frequency curves; no “loop” problem occurs. The predicted V; and @; at zero damping
agree very well with these of the K-method. The well-behaved damping and frequency curves
are believed to be more realistic than these of the K-method. Also, for the present AGARD
445 .6 case, the P-K method predicts a flutter mode associated with the first mode as opposite to
the second mode by the X-method.

A more meaningful contrast of the tow methods can be seen when the divergence speed

instability occurs. Fig 7.3 shows the V-g and V-f diagrams of the K-method and the V-g and V-f
diagrams of a jet transport wing (Ref 7.6) with 10 modes at M = 0. Both methods predict a
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flutter speed ¥, at 1050 ft/sec. This is expected since at zero damping both methods reduce to
the same equation.

A significant difference does occur when a divergence speed instability appears at 1651 ft/sec.
This divergence speed instability is evident by its associated zero frequency. The V-g curve of
the bending mode predicted by the K-method approaches the zero damping axis perpendicularly
but doe not cross it. The corresponding damping cure of the P-K method has a discontinuity but
it develops the divergence speed instability. It is believed that this discontinuity is associated
with the occurrence of an aerodynamic lag root. In the next section, we will discuss the physical
significance of the aerodynamic lag root.
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Fig 7.3 Jet Transport Wing at M=0.0 at Sea Level using: (a) K-Method (b) P-K Method
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Another principal advantage of the cure of the P-K method is that it produces results directly for
given values of velocity and air density pairs. This allows the cure of the P-K method to provide
the matched point solution in that the given velocity and air density satisfy V; = Ma,_
However, in the next section, we will show that the added aerodynamic damping matrix in Eq
7.12 is valid only at small  or for linearly varying Q(ik). For highly nonlinear Q(ik), the P-K
method may produce unrealistic root. '

7.3  The g-Method

By utilizing a damping perturbation method, Chen (Ref 7.7) suggested that a first order damping
term can be included in the flutter equation. This first order damping term is rigorously derived
from the Laplace domain aerodynamic, leading to a flutter solution technique called the “g-
method”.

Formulation of the g-Method

The basic assumption of the g-method lies in the existence of an analytic function of
Q(p) = Q(g +ik), where g = yk so that Q(p) can be expanded along the imaginary axis
(i.e., g=0) for small g by means of a damping perturbation method:

Qp) ~ QUk) + g—==| ,  for g<<1 (7.15)

g=0

Q(p)
og

The second term on the right hand side of Eq 7.15 is generally not available from the 4-domain
unsteady aerodynamic methods. However, due to analytic continuation, it can be replaced by:

oQ(p)
og

_ dQUik)
d(ik)

» Ty y = Q'(ik) (7.16)

Eq 7.16 is valid in the complete p-domain except along the negative real axis in subsonic flow
(Ref 7.8). This implies that Q’(ik) can be computed from Q(ik) by a central differencing

scheme, except at k= 0. At k=0, a forward differencing scheme is employed to accommodate
the discontinuity of Q(ik) along the negative real axis. Substituting Eq 7.16 into Eq 7.15 yields
the approximated p-domain solution of Q(p) in terms of & and for small g:

Q(p) ~ Qk) + g Q'(ik) (7.17)

Substituting Eq 7.17 into Eq 7.3 yields the g-method equation:

2
[[’2 )Mp +K - 2 pV QUi g - 2PV (zk)]{q} =0 (7.18)
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At g = 0, both the g-method and the P-K method reduce to the same form. This indicates that
both methods will provide the same flutter boundary for zero damping. For non-zero g,
comparing Eq 7.18 to Eq 7.14, it can be seen that the difference between the P-X method

equation and the g-method equation lies in the terms QY in Eq 7.14 and Q’(ik) in Eq 7.18. In
fact, QYk is a special case of Q’(ik). This can be shown as follows:

Expanding Q(ik) about ik = 0 by Taylor’s expansion gives:
Q(ik) = Q(0) + ik Q'(0) + —;—(z’k)2 Q'(0) + ... (7.19)

Since all Q"(0) are real, Q(ik) can be split into the real and imaginary parts. It reads:

Q(ik) = Q% +iQ' (7.20)
where:
= Q(0) - —;-kz Q"(0) + ... (7.21)
and:
Q' = kQ'(0) - %18 Q"(0) + ... (7.22)

Dividing Eq 7.22 by k gives the term QYk in Eq 7.14 as:

Differentiating Eq 7.19 with respect to ik gives the term Q’(ik) in Eq7.18 as:

Q'(ik) = Q'(0) + ik Q"(0) + ... (7.26)
Comparison of Eq 7.23 with Eq 7.24 shows that the equality of QYk and Q'(ik) exists only if
Q(ik) is a linear function of k or at £ = 0. This proves that the added aerodynamic damping
matrix in Eq 7.14 is valid only if one of the above conditions is satisfied. In fact, if Q(ik) is
highly nonlinear, the P-K method may produce unrealistic roots due to the error from the
differences between Eq 7.23 and Eq 7.24.

Solution Algorithm of the g-Method

Substituting p = g + ik into Eq 7.18 yields a second-order linear system in terms of g:

[g’A+gB+Cl{g} =0 (7.25)
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where:
2
A= (K) M
L

N4 P L 4

AY 1 1%
= -k K - = pV2Qik) + ik| = |Z
C [L)M+ 5P Q(1)+1(L)

Here, Eq 7.25 is formally called the g-Method equation. For completeness, in Eq 7.25, we have
included a modal structural damping matrix Z. The solutions of Eq 7.25 exist when Im(g) = 0.
To search for this condition, we first rewrite Eq 7.25 in a state space form:

D - g1Jx} = 0 (7.26)

where:
0 I
D= [_ AZC oA B] (7.27)

Next, a reduced-frequency-sweep technique is introduced. This technique searches for the
condition Im(g) = 0 and solves for the eigenvalues of D in term of g; starting from & = 0,
incrementally increasing k by Ak, and ending at kmax (kmax is the highest value in the reduced
frequency list of the unsteady aerodynamic computations). The reduced frequency-sweep
technique searches for the sign change of the imaginary part of the eigenvalues between & and |k
+ AK. If this occurs, the condition of Im(g) = 0 can be obtained by a linear interpolation in k for
the appropriate frequency range. Then the flutter frequency @, and damping 2y are computed

v
o = k(—L—) (7.27)
27 = 1 28) (128)

For k=0, an alternative form of Eq 7.28 is used (Ref 7.9):

Re(g) (—;{;—)

27 = "0

(7.29)

One of the issues in performing the reduced frequency-sweep technique is the eigenvalue
tracking from k to [k + AA]. In order to monitor the sign change of eigenvalues, it is required that

127




the eigenvalues are lined up at each k and |k + Ak. Using the regular sorting scheme by
comparing the differences of the eigenvalues at |k + Ak| to those at % is certainly not robust and
requires small Ak values that may be costly. This eigenvalue tracking issue can be resolved by
means of a predictor-corrector scheme.

Predictor-Corrector Scheme for Eigenvalue Tracking

The predictor predicts the eigenvalues at |k + A4| by a linear extrapolation from the eigenvalues
and their derivatives at k:

g, (k + Ak) = g(k) + Akg% (7.30)

where g; is defined as the predicted eigenvalue. % can be obtained by using the orthogonality

property of the left and right eigenvectors of Eq 7.26. This leads to:

7.31
dk Y'X (7.31)
where Y and X are the left and right eigenvectors of Eq 7.26, respectively, and:
0 0
dD
—_— 4 dC .1 dB (7.32)
- A 1 % -A 1 ___:|
dk [ dk dk

Once g; is given by the predictor, g, is used as the baseline eigenvalues for sorting the computed
eigenvalues at |k + A%|, defined as g.. The maximum norm of the error between g, and g, for all
eigenvalues is also computed. If it exceeds a certain level, the predictor could potentially
introduce incorrect eigenvalue tracking results due to rapid changes of the eigenvalues. In this
case, the corrector is activated.

The corrector reduces the size of Ak by a factor, for instance 100, and recomputes g, and g at

(k + %) as well as the maximum norm of the error. This process repeats until the maximum

norm of the error is below a certain level. However, numerical experience shows that when the
corrector is activated, this condition can be satisfied by reducing the size of Ak only once.
Therefore, the corrector normally would not increase the computational time significantly. It
serves only as a fail-safe scheme.
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At k = kyax, %gk- is also used to search for the condition Im(g) = 0 at £ > ky.x by a linear

extrapolation. Thus, the reduced-frequency-sweep technique offers a scheme that could find all
real roots of Eq 7.25 in the complete reduced frequency domain.

At this point, the issue of the number of real roots that could exist in Eq 7.25 is discussed. For n
structural modes, the P-K method and K-method normally provide only n roots of the flutter
equation. However, as indicated by Ref 26, the number of roots could exceed the number of the
structural modes if the aerodynamic lag roots appear. For instance, if the exact Theodorsen
function is used, the number of aerodynamic lag roots that would appear is infinite. As one can
see, unlike the P-K and K-methods, the reduced frequency-sweep technique employed by the
present g-method potentially gives an unlimited number of roots. The inclusion of all activated
aerodynamic lag roots could provide important physical interpretations of the flutter solution.

"0.002 T T T
0.00 0.10 0.20 0.30 0.40

Reduced Frequency (k)

Fig 7.4 Generalized Aerodynamic Forces vs. Reduced Frequency of the 15° Sweptback Wing
at M = 0.45, 4 Modes

Comparison Between the g-Method and the P-K Method
o The 15-Degree Sweptback Wing at M = 0.45

This test case is denoted as HA145E in Ref 3.3. Four structural modes are used for flutter
analysis. The imaginary parts of the 4 x 4 generalized aerodynamic forces matrix (denoted as
Q;) vs. k are presented in Fig 7.4. Since Im(Qy;) are all nearly linear that gives a close equality
of Eq 7.23 and Eq 7.25, the agreement between the damping computed by the P-K method and
the g-method is expected. Fig 7.5 shows the damping vs. velocity diagram (V-g diagram) and
the flutter frequency vs. velocity diagram (V-f diagram) computed by both methods. Good
agreement between these methods is obtained except the g-method predicts one extra
aerodynamic lag root (represented by the crosses in Fig 2). This aerodynamic lag root becomes
active at V=550 ft/sec with stable damping but its frequency remains zero. Since the number of
roots computed by the P-K method is restricted to be the same as the number of the structural
modes, at V' = 600 ft/sec the P-K method’s reduced frequency “lining-up” process skips the
bending mode and obtains the aerodynamic lag root; this creates a discontinuity of the damping
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associated with the bending mode in the v-g diagram (represented by the opened triangles). By
contrast, the g-method gives a continuous damping curve of the bending mode (represented by
the solid triangles) and a discontinuity in the damping curve of the aerodynamic lag root (the
crosses) at V=550 ft/sec.

In order to investigate how the g-method obtains the aerodynamic lag root, the search history in
terms of eigenvalues vs. & for the reduced frequency-sweep technique is presented in Fig 7.6 for
V=500 ft/sec and Fig 7.7 for ¥ = 650 ft/sec. Since there are 4 structural modes, the state space
form of Eq 7.26 provides 8 eigenvalues. At V' = 500 ft/sec the imaginary parts (Im(g)) of these 8
eigenvalues provide four zero crossings (marked by the opened circles in Fig 7.6). These four
zero crossings represent the four roots of the four structural modes.

It is noted that the zero crossing of the first eigenvalue is obtained by extrapolation from the
eigenvalue and its derivative at k = kna. At ¥V = 650 ft/sec Im(g) of the seventh eigenvalue
becomes zero at £ = 0 which corresponds to the occurrence of the aerodynamic lag root. This
can be seen clearly in the expanded view of Im(g) at small £ (at the upper right comer of Fig
7.7). The real part of this eigenvalue (Re(g)) at k= 0 has a negative value (Fig 7.7) that indicates
this aerodynamic lag root is stable; however, the expanded view shows a potential coupling
between the aerodynamic lag root and the sixth eigenvalue since the zero crossing of the sixth
eigenvalue already occurs at small k. This indicates an instability may appear at a higher
velocity.
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Fig 7.5 V-g and V-f Diagrams of the 15° Sweptback Wing at M = 0.45
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Fig 7.7 Search History of the Reduced Frequency-Sweep Technique at V' = 600 ft/sec
o Jet Transport Wing at M = 0.0 with 10 Modes

This test case has been discussed in Sec 7.2. Ten structural modes are used for flutter analysis
but only the results of the first bending and torsion modes are presented in the V-g and V-f
diagrams shown in Fig 7.8. Two types of instability are predicted by both the P-KX method and
the g-method: a flutter speed at V' = 1056 ft/.sec and a divergence speed at V= 1651 ft/.sec. This
agreement is expected since at g = 0 the flutter equation of both methods reduce to the same
form. Three aerodynamic lag roots are obtained by the g-method and their frequencies are all
zero throughout the velocity range of interest. Both of the first and second aerodynamic lag
roots become active at the same speed (V' = 1400 ft/sec). After this speed, the second
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aerodynamic lag root forms a super-stable mode but at this speed the damping of the first
aerodynamic lag root jumps suddenly from zero to — 0.1 then gradually crosses the zero-damping
axis, forming a divergence type of instability at ¥ = 1651 ft/sec. At this divergence speed, the
third aerodynamic lag root becomes active and suddenly jumps to a high value of unstable
damping (Fig 7.8). This is an interesting phenomenon because it indicates that this divergence
speed could be a bifurcation point. Determining the third aerodynamic lag root is bifurcated
from the first aerodynamic lag root or originates on its own needs further investigation.

Similarly to the first test case, the damping curve of the bending mode computed by the P-X
method has a discontinuity while that of the g-method remains a smooth curve. The damping
curve of the torsion mode computed by both methods are in excellent agreement. The frequency
curves of the two structural modes computed by both methods also in good agreement except for
the absence of the three aerodynamic lag roots of the P-K method.
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Fig 7.8 V-g and V-f Diagrams of the BAH Wing, M = 0.0, 10 Modes
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o Two Degrees of Freedom Airfoil at M = 0.0

This test case is adopted from Ref 7.10 and is derived from the case denoted as HA145A in Ref
3.3 but with the fuselage grid point being constrained. The center of gravity is located at 37%
chord. Fig 7.9 presents the variations of the 2 x 2 Q;; vs. k. In this case, Fig 7.9 shows that the
imaginary parts of Q;; is not linear. Therefore, some difference in flutter results between the P-X
method and the g-method is expected. First, for clarity, the V-g diagram computed by the g-
method alone is presented in Fig 7.10. Two aerodynamic lag roots are found. Again, it seems
that the second aerodynamic lag root is bifurcated from the first one at V' = 210 ft/sec where a
divergence instability occurs. The comparison of the damping and flutter frequencies between
the P-K method and the g-method is shown in Fig 7.11; however, for clarity, the second
aerodynamic lag root is not repeatedly shown. In Fig 7.11 the results computed by the transient
method are also presented. The transient method is based on a time-domain unsteady
aerodynamic method, therefore it can be considered as a p-method. All of the three methods
predict the same instabilities: a divergence instability at ¥ = 210 ft/sec and a flutter instability at
V =250 ft/sec. The damping curves of the first and second modes computed by the g-method
correlate well with those of the transient method. But, again, the P-KX method gives a
discontinuous damping curve of the first mode.

For the case of the center of gravity moved to 45% chord, the V-g diagram shown in Fig 12.a
indicates that the flutter instability (at ¥/ = 170 ft/sec) occurs before the divergence instability (at
V=225 ft/sec). Again, this is well predicted by all three methods. The frequency curves in the V-f
diagram (Fig 12.b) computed by the g-method show a similar trend as those of the transient
method. But the curves of the P-K method are discontinuous at ¥ = 100 ft/sec where an
aerodynamic lag root appears (not obtained by the transient method but well captured by the g-
method). This results a poor correlation of the V-f curves obtained by the P-K method with the
other two methods.
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Fig 7.9 Generalized Forces of 2 D.O.F. Airfoil, C.G. @ 37% Chord (HA145A1), M = 0.0, 2 Modes
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o Three Degrees of Freedom Airfoil at M = 0.0

This test case is denoted as HA145A in Ref 3.3. A fuselage free-free plunge mode is added in
the above two degrees of freedom case. The V-g and V-f diagrams for the case of the center of
gravity located at 37% chord are shown in Fig 7.13 and those for 45% chord are in Fig 7.14. For
both cases, the so-called “dynamic divergence” (Ref 7.11) occurs and its speeds and frequencies
are well predicted by all three methods: the P-K method, the g-method, and the transient method.
Both the g-method and the transient method capture one aerodynamic lag root (in the 45% chord
case, the g-method obtains a second lag root but it becomes active at the dynamic divergence
speed and is not discussed here). Unlike the restrained structures of all previous test cases where
the frequency of the lag roots remains zero, the aerodynamic lag root of the present unrestrained
structure ‘takes off” from the zero-frequency axis then couples with the bending mode. This
coupling of the lag root and bending mode forms a “dynamic divergence” instability.
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As indicated by Ref 7.11, this dynamic divergence has a non-zero frequency and could be
defined as a low-frequency flutter instability. On the other hand, the P-K method generated lag
root somehow refuses to ‘take off’ from the zero-frequency axis. This problem of the P-X
method is probably due to the fact that since Qj of the present test case is nonlinear, the P-X
method is valid only at k£ = 0 for non-zero damping. This k = 0 condition restricts the frequency
of the lag root from being a non-zero value and results in a poor correlation in the V-f diagram

with the other two methods.
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Fig 7.13 Damping and Frequency vs. Velocity of 3 D.O.F. Airfoil, C.G. @ 37% Chord (HA145A2),
M =0.0,3 Modes
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e The Johnson Configuration at M = 0.84 with 17 Modes

This test case is adopted from Ref 7.12. The Johnson configuration has three rigid body modes
and 14 elastic modes. The imaginary parts of Q;; vs. & for i and j = 4, 5 and 6 presented in Fig
7.15 show that spikes occur at small £ The cause of the spikes is probably due to poor
aerodynamic modeling; but this is not an issue to be discussed here. Since Qj are highly
nonlinear, a large difference between the results obtained from the P-X method and the g-method
is anticipated. In fact, in this case the P-K method breaks down (Ref 7.12) and its results are
totally unreliable. It is believed that the break-down of the P-K method is caused by the
unrealistic roots produced by the nonlinear Q;. In order to validate the g-method result, the K-
method is used for comparison.
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Fig 7.16 Damping and Frequency vs. Velocity of Johnson Configuration, M = 0.84, 17 Modes
There are 13 aerodynamic lag roots obtained by the g-method. Due to the spikes at small £,
some of them become active even at very low speed. These lag roots are not presented here. Fig

7.16 shows the V-g and V-f diagrams obtained by the K-method and the g-method for the first
three elastic modes; denoted as mode 4, 5, and 6. It can be seen that both methods predict the
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same flutter boundary around V' = 470 ft/sec. The good agreement between the K-method and
the g-method indicates the robustness of the g-method’s solution algorithm.

It is generally believed that the X-method is only valid at the g = 0 condition. The present work
d'Q

also proves that the P-X method is valid at the conditions of g=0, k=0, or = 0, where

n> 1. The g-method generalizes the X-method and the P-K method. It is valid for all £ and up to
the first order of g. This first order term of g is rigorously derived from Q(p) by a damping
perturbation method.

The present work also provides a theoretical foundation for the g-method that can be used to
estimate the error of large damping (beyond the first order assumption) due to the truncation of
the higher order terms of g. However, based on the formulation of the g-method, adding higher
order terms in g seems to be straightforward.
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